Minary Peter, Levitt Michael
Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA.
J Comput Biol. 2010 Aug;17(8):993-1010. doi: 10.1089/cmb.2010.0016.
The present article introduces a set of novel methods that facilitate the use of "natural moves" or arbitrary degrees of freedom that can give rise to collective rearrangements in the structure of biological macromolecules. While such "natural moves" may spoil the stereochemistry and even break the bonded chain at multiple locations, our new method restores the correct chain geometry by adjusting bond and torsion angles in an arbitrary defined molten zone. This is done by successive stages of partial closure that propagate the location of the chain break backwards along the chain. At the end of these stages, the size of the chain break is generally reduced so much that it can be repaired by adjusting the position of a single atom. Our chain closure method is efficient with a computational complexity of O(N(d)), where N(d) is the number of degrees of freedom used to repair the chain break. The new method facilitates the use of arbitrary degrees of freedom including the "natural" degrees of freedom inferred from analyzing experimental (X-ray crystallography and nuclear magnetic resonance [NMR]) structures of nucleic acids and proteins. In terms of its ability to generate large conformational moves and its effectiveness in locating low energy states, the new method is robust and computationally efficient.
本文介绍了一组新颖的方法,这些方法有助于使用“自然移动”或任意自由度,从而引起生物大分子结构中的集体重排。虽然这种“自然移动”可能会破坏立体化学,甚至在多个位置打断键合链,但我们的新方法通过在任意定义的熔融区域中调整键角和扭转角来恢复正确的链几何形状。这是通过部分闭合的连续阶段来完成的,这些阶段沿着链将链断裂的位置向后传播。在这些阶段结束时,链断裂的大小通常会大幅减小,以至于可以通过调整单个原子的位置来修复。我们的链闭合方法效率很高,计算复杂度为O(N(d)),其中N(d)是用于修复链断裂的自由度数。新方法便于使用任意自由度,包括从分析核酸和蛋白质的实验(X射线晶体学和核磁共振[NMR])结构推断出的“自然”自由度。就其产生大的构象移动的能力及其在定位低能态方面的有效性而言,新方法既稳健又计算高效。