Science. 1983 May 13;220(4598):671-80. doi: 10.1126/science.220.4598.671.
There is a deep and useful connection between statistical mechanics (the behavior of systems with many degrees of freedom in thermal equilibrium at a finite temperature) and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters). A detailed analogy with annealing in solids provides a framework for optimization of the properties of very large and complex systems. This connection to statistical mechanics exposes new information and provides an unfamiliar perspective on traditional optimization problems and methods.
统计力学(在有限温度下具有多个自由度的系统的热平衡行为)与多元或组合优化(找到给定函数在许多参数下的最小值)之间存在着深刻而有用的联系。与固体中的退火的详细类比为优化非常大而复杂的系统的性质提供了一个框架。这种与统计力学的联系揭示了新的信息,并为传统的优化问题和方法提供了一个陌生的视角。