Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York 10032, USA.
Gastroenterology. 2011 Jan;140(1):73-81. doi: 10.1053/j.gastro.2010.08.021. Epub 2010 Aug 19.
BACKGROUND & AIMS: We developed and validated a model to estimate the risks of mutations in the mismatch repair (MMR) genes MLH1, MSH2, and MSH6 based on personal and family history of cancer.
Data were analyzed from 4539 probands tested for mutations in MLH1, MSH2, and MSH6. A multivariable polytomous logistic regression model (PREMM(1,2,6)) was developed to predict the overall risk of MMR gene mutations and the risk of mutation in each of the 3 genes. The discriminative ability of the model was validated in 1827 population-based colorectal cancer (CRC) cases.
Twelve percent of the original cohort carried pathogenic mutations (204 in MLH1, 250 in MSH2, and 71 in MSH6). The PREMM(1,2,6) model incorporated the following factors from the probands and first- and second-degree relatives (odds ratio; 95% confidence intervals [CIs]): male sex (1.9; 1.5-2.4), a CRC (4.3; 3.3-5.6), multiple CRCs (13.7; 8.5-22), endometrial cancer (6.1; 4.6-8.2), and extracolonic cancers (3.3; 2.4-4.6). The areas under the receiver operating characteristic curves were 0.86 (95% CI, 0.82-0.91) for MLH1 mutation carriers, 0.87 (95% CI, 0.83-0.92) for MSH2, and 0.81 (95% CI, 0.69-0.93) for MSH6; in validation, they were 0.88 for the overall cohort (95% CI, 0.86-0.90) and the population-based cases (95% CI, 0.83-0.92).
We developed the PREMM(1,2,6) model, which incorporates information on cancer history from probands and their relatives to estimate an individual's risk of mutations in the MMR genes MLH1, MSH2, and MSH6. This Web-based decision making tool can be used to assess risk of hereditary CRC and guide clinical management.
我们开发并验证了一种模型,该模型基于癌症的个人和家族史来估计错配修复(MMR)基因 MLH1、MSH2 和 MSH6 突变的风险。
对 4539 名 MLH1、MSH2 和 MSH6 基因突变检测的先证者进行数据分析。建立了多变量多项逻辑回归模型(PREMM(1,2,6)),以预测 MMR 基因突变的总体风险以及 3 个基因中每个基因的突变风险。该模型的判别能力在 1827 例基于人群的结直肠癌(CRC)病例中得到验证。
原始队列中有 12%的患者携带致病性突变(MLH1 中有 204 例,MSH2 中有 250 例,MSH6 中有 71 例)。PREMM(1,2,6) 模型纳入了先证者及其一级和二级亲属的以下因素(比值比;95%置信区间[CI]):男性(1.9;1.5-2.4)、CRC(4.3;3.3-5.6)、多个 CRC(13.7;8.5-22)、子宫内膜癌(6.1;4.6-8.2)和结外癌症(3.3;2.4-4.6)。受体工作特征曲线下面积分别为 MLH1 突变携带者为 0.86(95%CI,0.82-0.91)、MSH2 为 0.87(95%CI,0.83-0.92)、MSH6 为 0.81(95%CI,0.69-0.93);在验证中,总体队列(95%CI,0.86-0.90)和基于人群的病例(95%CI,0.83-0.92)分别为 0.88。
我们开发了 PREMM(1,2,6) 模型,该模型纳入了先证者及其亲属的癌症史信息,以估计个体 MLH1、MSH2 和 MSH6 中 MMR 基因突变的风险。这个基于网络的决策工具可用于评估遗传性 CRC 的风险并指导临床管理。