Suppr超能文献

基于可见/近红外反射光谱技术的鲜猪肉品质在线预测

On-line prediction of fresh pork quality using visible/near-infrared reflectance spectroscopy.

机构信息

College of Biosystems Engineering and Food Science, Zhejiang University, 268 Kaixuan Road, Hangzhou, Zhejiang 310029, PR China.

出版信息

Meat Sci. 2010 Dec;86(4):901-7. doi: 10.1016/j.meatsci.2010.07.011. Epub 2010 Jul 23.

Abstract

Visible/near-infrared (Vis/NIR) spectroscopy was tested to predict the quality attributes of fresh pork (content of intramuscular fat, protein and water, pH and shear force value) on-line. Vis/NIR spectra (350-1100 nm) were obtained from 211 samples using a prototype. Partial least-squares regression (PLSR) models were developed by external validation with wavelet de-noising and several pre-processing methods. The 6th order Daubechies wavelet with 6 decomposition levels (db6-6) showed high de-noising ability with good information preservation. The first derivative of db6-6 de-noised spectra combined with multiplicative scatter correction yielded the prediction models with the highest coefficient of determination (R(2)) for all traits in both calibration and validation periods, which were all above 0.757 except for the prediction of shear force value. The results indicate that Vis/NIR spectroscopy is a promising technique to roughly predict the quality attributes of intact fresh pork on-line.

摘要

可见/近红外(Vis/NIR)光谱法已被用于在线预测鲜猪肉(肌内脂肪、蛋白质和水分含量、pH 值和剪切力值)的质量属性。使用原型机从 211 个样本中获得 Vis/NIR 光谱(350-1100nm)。通过外部验证,采用小波去噪和多种预处理方法建立偏最小二乘回归(PLSR)模型。第 6 阶 Daubechies 小波(db6-6)具有 6 个分解级别的去噪能力,可很好地保留信息。db6-6 去噪光谱的一阶导数与乘法散射校正相结合,为校准和验证期间所有性状的预测模型提供了最高的决定系数(R(2)),除了剪切力值的预测外,均高于 0.757。结果表明,Vis/NIR 光谱法是一种很有前途的技术,可用于在线大致预测完整鲜猪肉的质量属性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验