Suppr超能文献

利用快速光谱技术结合多类判别分析检测食用燕窝掺假

Adulteration Detection of Edible Bird's Nests Using Rapid Spectroscopic Techniques Coupled with Multi-Class Discriminant Analysis.

作者信息

Ng Jing Sheng, Muhammad Syahidah Akmal, Yong Chin Hong, Mohd Rodhi Ainolsyakira, Ibrahim Baharudin, Adenan Mohd Noor Hidayat, Moosa Salmah, Othman Zainon, Abdullah Salim Nazaratul Ashifa, Sharif Zawiyah, Ismail Faridah, Kelly Simon D, Cannavan Andrew

机构信息

Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.

Analytical Biochemistry Research Centre (ABrC), Inkubator Inovasi Universiti (I2U), Kampus SAINS@USM, Universiti Sains Malaysia, Lebuh Bukit Jambul, Bayan Lepas 11900, Penang, Malaysia.

出版信息

Foods. 2022 Aug 10;11(16):2401. doi: 10.3390/foods11162401.

Abstract

Edible bird's nests (EBNs) are vulnerable to adulteration due to their huge demand for traditional medicine and high market price. Presently, there are pressing needs to explore field-deployable rapid screening techniques to detect adulteration of EBNs. The objective of this study is to explore the feasibility of using a handheld near-infrared (VIS/SW-NIR) spectroscopic device for the determination of EBN authenticity against the benchmark performance of a benchtop mid-infrared (MIR) spectrometer. Forty-nine authentic EBNs from the different states in Malaysia and 13 different adulterants (five types) were obtained and used to simulate the adulteration of EBNs at 1, 5 and 10% adulteration by mass (a total of 15 adulterated samples). The VIS/SW-NIR and MIR spectra collated were subsequently processed, modelled and classified using multi-class discriminant analysis. The VIS/SW-NIR results showed 100% correct classification for the collagen and nutrient agar classes in authenticity classification, while for the other classes, the lowest correct classification rate was 96.3%. For MIR analysis, only the karaya gum class had 100% correct classification whilst for the other four classes, the lowest rate of correct classification was at 94.4%. In conclusion, the combination of spectroscopic analysis with chemometrics can be a powerful screening tool to detect EBN adulteration.

摘要

由于对传统医学的巨大需求和高昂的市场价格,食用燕窝(EBNs)容易受到掺假的影响。目前,迫切需要探索可现场部署的快速筛查技术来检测EBNs的掺假情况。本研究的目的是探讨使用手持式近红外(VIS/SW-NIR)光谱仪根据台式中红外(MIR)光谱仪的基准性能来测定EBNs真伪的可行性。从马来西亚不同州获得了49个正宗EBNs和13种不同的掺假物(5种类型),并用于模拟按质量计1%、5%和10%掺假率的EBNs掺假情况(共15个掺假样品)。随后,对整理的VIS/SW-NIR和MIR光谱进行处理、建模并使用多类判别分析进行分类。VIS/SW-NIR结果显示,在真伪分类中,胶原蛋白和营养琼脂类别的正确分类率为100%,而对于其他类别,最低正确分类率为96.3%。对于MIR分析,只有刺梧桐树胶类别的正确分类率为100%,而对于其他四类,最低正确分类率为94.4%。总之,光谱分析与化学计量学相结合可以成为检测EBN掺假的强大筛查工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddb2/9407431/eafc2ffdff0b/foods-11-02401-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验