IEEE Trans Image Process. 2011 Feb;20(2):317-26. doi: 10.1109/TIP.2010.2066980. Epub 2010 Aug 19.
We study the theory and algorithms of an optimal use of multidimensional signal reconstruction from multichannel acquisition by using a filter bank setup. Suppose that we have an N-channel convolution system, referred to as N analysis filters, in M dimensions. Instead of taking all the data and applying multichannel deconvolution, we first reduce the collected data set by an integer M×M uniform sampling matrix [Formula: see text], and then search for a synthesis polyphase matrix which could perfectly reconstruct any input discrete signal. First, we determine the existence of perfect reconstruction (PR) systems for a given set of finite-impulse response (FIR) analysis filters. Second, we present an efficient algorithm to find a sampling matrix with maximum sampling rate and to find a FIR PR synthesis polyphase matrix for a given set of FIR analysis filters. Finally, once a particular FIR PR synthesis polyphase matrix is found, we can characterize all FIR PR synthesis matrices, and then find an optimal one according to design criteria including robust reconstruction in the presence of noise.
我们研究了通过滤波器组设置从多通道采集进行多维信号重建的最佳使用的理论和算法。假设我们有一个 N 通道卷积系统,称为 N 个分析滤波器,在 M 个维度上。我们不是采用所有数据并应用多通道反卷积,而是首先通过整数 M×M 均匀采样矩阵 [公式: 见正文] 减少所收集的数据集合,然后搜索能够完美重建任何输入离散信号的合成多相矩阵。首先,我们确定给定有限脉冲响应 (FIR) 分析滤波器集是否存在完美重建 (PR) 系统。其次,我们提出了一种有效的算法来找到具有最大采样率的采样矩阵,并为给定的 FIR 分析滤波器集找到 FIR PR 合成多相矩阵。最后,一旦找到特定的 FIR PR 合成多相矩阵,我们就可以表征所有 FIR PR 合成矩阵,然后根据包括噪声存在时的稳健重建在内的设计标准找到最佳的矩阵。