Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA.
Am J Physiol Lung Cell Mol Physiol. 2010 Dec;299(6):L891-7. doi: 10.1152/ajplung.00366.2009. Epub 2010 Aug 20.
Carbon monoxide (CO) confers anti-inflammatory protection in rodent models of lung injury when applied at low concentration. Translation of these findings to clinical therapies for pulmonary inflammation requires validation in higher mammals. We have evaluated the efficacy of inhaled CO in reducing LPS-induced lung inflammation in cynomolgus macaques. LPS inhalation resulted in profound neutrophil influx and moderate increases in airway lymphocytes, which returned to baseline levels within 2 wk following exposure. CO exposure (500 ppm, 6 h) following LPS inhalation decreased TNF-α release in bronchoalveolar lavage fluid but did not affect IL-6 or IL-8 release. Lower concentrations of CO (250 ppm, 6 h) did not reduce pulmonary neutrophilia. Pretreatment with budesonide, a currently used inhaled corticosteroid, decreased LPS-induced expression of TNF-α, IL-6, and IL-8, and reduced LPS-induced neutrophilia by ∼84%. In comparison, CO inhalation (500 ppm, for 6 h after LPS exposure) reduced neutrophilia by ∼67%. Thus, inhaled CO was nearly as efficacious as pretreatment with an inhaled corticosteroid at reducing airway neutrophil influx in cynomolgus macaques. However, the therapeutic efficacy of CO required relatively high doses (500 ppm) that resulted in high carboxyhemoglobin (COHb) levels (>30%). Lower CO concentrations (250 ppm), associated with anti-inflammatory protection in rodents, were ineffective in cynomolgus macaques and also yielded relatively high COHb levels. These studies highlight the complexity of interspecies variation of dose-response relationships of CO to COHb levels and to the anti-inflammatory functions of CO. The findings of this study warrant further investigations for assessing the therapeutic application of CO in nonhuman primate models of tissue injury and in human diseases. The study also suggests that akin to many new therapies in human diseases, the translation of CO therapy to human disease will require additional extensive and rigorous proof-of-concept studies in humans in the future.
一氧化碳(CO)在低浓度下应用于肺部损伤的啮齿动物模型中可提供抗炎保护。将这些发现转化为肺部炎症的临床治疗需要在较高等哺乳动物中进行验证。我们已经评估了吸入 CO 对降低灵长类动物脂多糖(LPS)诱导的肺部炎症的疗效。LPS 吸入导致严重的中性粒细胞浸润和中度气道淋巴细胞增加,暴露后 2 周内恢复到基线水平。LPS 吸入后吸入 CO(500ppm,6 小时)可降低支气管肺泡灌洗液中 TNF-α的释放,但不影响 IL-6 或 IL-8 的释放。较低浓度的 CO(250ppm,6 小时)不会减少肺部中性粒细胞增多。目前使用的吸入性皮质类固醇布地奈德预处理可降低 LPS 诱导的 TNF-α、IL-6 和 IL-8 的表达,并使 LPS 诱导的中性粒细胞增多减少约 84%。相比之下,CO 吸入(500ppm,LPS 暴露后 6 小时)可使中性粒细胞增多减少约 67%。因此,与皮质类固醇预处理相比,吸入 CO 在降低食蟹猴气道中性粒细胞浸润方面几乎同样有效。然而,CO 的治疗效果需要相对较高的剂量(500ppm),这会导致高铁血红蛋白(COHb)水平升高(>30%)。与啮齿动物的抗炎保护相关的较低 CO 浓度(250ppm)在食蟹猴中无效,也会导致相对较高的 COHb 水平。这些研究强调了 CO 对 COHb 水平和抗炎功能的剂量反应关系在物种间变化的复杂性。本研究的结果值得进一步研究,以评估 CO 在非人灵长类动物组织损伤模型和人类疾病中的治疗应用。该研究还表明,与许多人类疾病中的新疗法类似,CO 治疗的转化为人类疾病需要在未来对人类进行更多广泛和严格的概念验证研究。