Department of Environmental Science, University of Eastern Finland, Box 1627, 70211 Kuopio, Finland.
Water Sci Technol. 2010;62(4):743-50. doi: 10.2166/wst.2010.317.
We describe a neural network model of a municipal wastewater treatment plant (WWTP) in which on-line total solids (TS) sewer data generated by a novel microwave sensor is used as a model input variable. The predictive performance of the model is compared with and without sewer data and with modelling with a traditional linear multiple linear regression (MLR) model. In addition, the benefits of using neural networks are discussed. According to our results, the neural network based MLP (multilayer perceptron) model provides a better estimate than the corresponding MLR model of WWTP effluent TS load. The inclusion of sewer TS data as an input variable improved the performance of the models. The results suggest that increased on-line sensing of WWTPs should be stressed and that neural networks are useful as a modelling tool due to their capability of handling the nonlinear and dynamic data of sewer and WWTP systems.
我们描述了一个城市污水处理厂(WWTP)的神经网络模型,其中在线总固体(TS)下水道数据由新型微波传感器生成,用作模型输入变量。该模型的预测性能与有无下水道数据以及与传统线性多元线性回归(MLR)模型建模进行了比较。此外,还讨论了使用神经网络的好处。根据我们的结果,基于神经网络的 MLP(多层感知器)模型比 WWTP 出水中 TS 负荷的相应 MLR 模型提供了更好的估计。将下水道 TS 数据作为输入变量包括在内,提高了模型的性能。结果表明,应该强调对 WWTP 的在线感应,并且神经网络作为建模工具是有用的,因为它们能够处理下水道和 WWTP 系统的非线性和动态数据。