Suppr超能文献

利用污水管网在线总固体数据进行污水处理厂建模。

Use of sewer on-line total solids data in wastewater treatment plant modelling.

机构信息

Department of Environmental Science, University of Eastern Finland, Box 1627, 70211 Kuopio, Finland.

出版信息

Water Sci Technol. 2010;62(4):743-50. doi: 10.2166/wst.2010.317.

Abstract

We describe a neural network model of a municipal wastewater treatment plant (WWTP) in which on-line total solids (TS) sewer data generated by a novel microwave sensor is used as a model input variable. The predictive performance of the model is compared with and without sewer data and with modelling with a traditional linear multiple linear regression (MLR) model. In addition, the benefits of using neural networks are discussed. According to our results, the neural network based MLP (multilayer perceptron) model provides a better estimate than the corresponding MLR model of WWTP effluent TS load. The inclusion of sewer TS data as an input variable improved the performance of the models. The results suggest that increased on-line sensing of WWTPs should be stressed and that neural networks are useful as a modelling tool due to their capability of handling the nonlinear and dynamic data of sewer and WWTP systems.

摘要

我们描述了一个城市污水处理厂(WWTP)的神经网络模型,其中在线总固体(TS)下水道数据由新型微波传感器生成,用作模型输入变量。该模型的预测性能与有无下水道数据以及与传统线性多元线性回归(MLR)模型建模进行了比较。此外,还讨论了使用神经网络的好处。根据我们的结果,基于神经网络的 MLP(多层感知器)模型比 WWTP 出水中 TS 负荷的相应 MLR 模型提供了更好的估计。将下水道 TS 数据作为输入变量包括在内,提高了模型的性能。结果表明,应该强调对 WWTP 的在线感应,并且神经网络作为建模工具是有用的,因为它们能够处理下水道和 WWTP 系统的非线性和动态数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验