Suppr超能文献

聚四氟乙烯AF涂层聚二甲基硅氧烷微流体通道中的光流体波导。

Optofluidic Waveguides in Teflon AF-Coated PDMS Microfluidic Channels.

作者信息

Cho Sung Hwan, Godin Jessica, Lo Yu-Hwa

机构信息

Materials Science and Engineering Program, University of California at San Diego, La Jolla, CA 92093-0418 USA (

出版信息

IEEE Photonics Technol Lett. 2009 Aug 1;21(15):1057-1059. doi: 10.1109/LPT.2009.2022276.

Abstract

We report a new method for fabricating an optofluidic waveguide that is compatible with polydimethylsiloxane (PDMS). The light path follows the microfluidic channels, an architecture that can maximize detection efficiency and make the most economic use of chip area in many lab-on-chip applications. The PDMS-based microfluidic channels are coated with Teflon amorphous fluoropolymers (Teflon AF) which has a lower refractive index (n = 1.31) than water (n = 1.33) to form a water/Teflon AF optical waveguide. Driven by a vacuum pump, the Teflon AF solution was flowed through the channels, leaving a thin (5-15 µm) layer of coating on the channel wall as the cladding layer of optical waveguides. This coating process resolves the limitations of spin-coating processes by reducing the elasticity mismatch between the Teflon AF cladding layer and the PDMS device body. We demonstrate that the resulting optofluidic waveguide confines and guides the laser light through the liquid core channel. Furthermore, the light in such a waveguide can be split when the fluid flow is split. This new method enables highly integrated biosensors such as lab-on-chip flow cytometers and micro-fabricated fluorescence-activated cell sorter with on-chip excitation.

摘要

我们报告了一种用于制造与聚二甲基硅氧烷(PDMS)兼容的光流体波导的新方法。光路沿着微流体通道,这种结构在许多芯片实验室应用中可以最大化检测效率并最经济地利用芯片面积。基于PDMS的微流体通道涂覆有聚四氟乙烯无定形含氟聚合物(特氟龙AF),其折射率(n = 1.31)低于水(n = 1.33),以形成水/特氟龙AF光波导。在真空泵的驱动下,特氟龙AF溶液流过通道,在通道壁上留下一层薄(5 - 15微米)的涂层作为光波导的包层。这种涂覆工艺通过减少特氟龙AF包层与PDMS器件主体之间的弹性失配,解决了旋涂工艺的局限性。我们证明,所得的光流体波导能够限制并引导激光通过液芯通道。此外,当流体流分开时,这种波导中的光也可以分开。这种新方法能够实现高度集成的生物传感器,如芯片实验室流式细胞仪和具有芯片上激发功能的微制造荧光激活细胞分选仪。

相似文献

1
Optofluidic Waveguides in Teflon AF-Coated PDMS Microfluidic Channels.
IEEE Photonics Technol Lett. 2009 Aug 1;21(15):1057-1059. doi: 10.1109/LPT.2009.2022276.
2
Micro-fabricated fluorescence-activated cell sorter.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1075-8. doi: 10.1109/IEMBS.2009.5334976.
3
A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides.
Lab Chip. 2012 Oct 7;12(19):3700-6. doi: 10.1039/c2lc40329c.
4
Fluorescent liquid-core/air-cladding waveguides towards integrated optofluidic light sources.
Lab Chip. 2008 Sep;8(9):1580-5. doi: 10.1039/b805341c. Epub 2008 Jul 18.
5
Teflon films for chemically-inert microfluidic valves and pumps.
Lab Chip. 2008 Jun;8(6):913-8. doi: 10.1039/b800600h. Epub 2008 Apr 11.
6
A hybrid silicon-PDMS optofluidic platform for sensing applications.
Biomed Opt Express. 2014 Jan 9;5(2):417-26. doi: 10.1364/BOE.5.000417. eCollection 2014 Feb 1.
7
Optical waveguides with an aqueous core and a low-index nanoporous cladding.
Opt Express. 2004 Dec 27;12(26):6446-55. doi: 10.1364/opex.12.006446.

引用本文的文献

1
On-Demand Fully Enclosed Superhydrophobic-Optofluidic Devices Enabled by Microstereolithography.
Langmuir. 2022 Aug 30;38(34):10672-10678. doi: 10.1021/acs.langmuir.2c01658. Epub 2022 Aug 19.
2
Adaptive Lens.
Prog Opt. 2010;55:199-283. doi: 10.1016/b978-0-444-53705-8.00004-7. Epub 2011 Jan 25.
4
A simple coating method of PDMS microchip with PTFE for synthesis of dexamethasone-encapsulated PLGA nanoparticles.
Drug Deliv Transl Res. 2019 Jun;9(3):707-720. doi: 10.1007/s13346-019-00636-z.
5
Optofluidic Microsystems for Chemical and Biological Analysis.
Nat Photonics. 2011 Oct 1;5(10):591-597. doi: 10.1038/nphoton.2011.206.
6
Mammalian Cell Sorting using μFACS.
Conf Lasers Electro Optics. 2010 May 16;2010:CTuD1. doi: 10.1364/cleo.2010.ctud1.
7
Review Article: Recent advancements in optofluidic flow cytometer.
Biomicrofluidics. 2010 Dec 30;4(4):43001. doi: 10.1063/1.3511706.
9
Micro-fabricated fluorescence-activated cell sorter.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1075-8. doi: 10.1109/IEMBS.2009.5334976.

本文引用的文献

1
Developing optofluidic technology through the fusion of microfluidics and optics.
Nature. 2006 Jul 27;442(7101):381-6. doi: 10.1038/nature05060.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验