Suppr超能文献

相似文献

2
Comparative mouse lung injury by nickel nanoparticles with differential surface modification.
J Nanobiotechnology. 2019 Jan 7;17(1):2. doi: 10.1186/s12951-018-0436-0.
3
Comparative pulmonary toxicity of inhaled nickel nanoparticles; role of deposited dose and solubility.
Inhal Toxicol. 2011 Feb;23(2):95-103. doi: 10.3109/08958378.2010.543440. Epub 2011 Jan 24.
4
Long-term inhalation exposure to nickel nanoparticles exacerbated atherosclerosis in a susceptible mouse model.
Environ Health Perspect. 2011 Feb;119(2):176-81. doi: 10.1289/ehp.1002508. Epub 2010 Sep 22.
6
Sex differences in the acute and subchronic lung inflammatory responses of mice to nickel nanoparticles.
Nanotoxicology. 2020 Oct;14(8):1058-1081. doi: 10.1080/17435390.2020.1808105. Epub 2020 Aug 19.
8
Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.
Toxicol Sci. 2007 May;97(1):163-80. doi: 10.1093/toxsci/kfm018. Epub 2007 Feb 14.
10
miR-21 mediates nickel nanoparticle-induced pulmonary injury and fibrosis.
Nanotoxicology. 2020 Nov;14(9):1175-1197. doi: 10.1080/17435390.2020.1808727. Epub 2020 Sep 14.

引用本文的文献

3
Comparison of nickel oxide nano and microparticles toxicity in rat liver: molecular, biochemical, and histopathological study.
Toxicol Res (Camb). 2023 Aug 1;12(5):741-750. doi: 10.1093/toxres/tfad062. eCollection 2023 Oct.
5
Review and Evaluation of the Potential Health Effects of Oxidic Nickel Nanoparticles.
Nanomaterials (Basel). 2021 Mar 5;11(3):642. doi: 10.3390/nano11030642.
6
miR-21 mediates nickel nanoparticle-induced pulmonary injury and fibrosis.
Nanotoxicology. 2020 Nov;14(9):1175-1197. doi: 10.1080/17435390.2020.1808727. Epub 2020 Sep 14.
7
Sex differences in the acute and subchronic lung inflammatory responses of mice to nickel nanoparticles.
Nanotoxicology. 2020 Oct;14(8):1058-1081. doi: 10.1080/17435390.2020.1808105. Epub 2020 Aug 19.
8
Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use.
Materials (Basel). 2019 Sep 20;12(19):3052. doi: 10.3390/ma12193052.

本文引用的文献

1
Comparing fate and effects of three particles of different surface properties: nano-TiO(2), pigmentary TiO(2) and quartz.
Toxicol Lett. 2009 May 8;186(3):152-9. doi: 10.1016/j.toxlet.2008.11.020. Epub 2008 Dec 7.
2
Cytotoxicity of nanoparticles.
Small. 2008 Jan;4(1):26-49. doi: 10.1002/smll.200700595.
3
The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles.
Am J Respir Cell Mol Biol. 2008 Mar;38(3):371-6. doi: 10.1165/rcmb.2007-0138OC. Epub 2007 Oct 18.
4
Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition.
Environ Health Perspect. 2007 Mar;115(3):403-9. doi: 10.1289/ehp.8497. Epub 2006 Dec 11.
6
Fluorescent tracking of nickel ions in human cultured cells.
Toxicol Appl Pharmacol. 2007 Feb 15;219(1):18-23. doi: 10.1016/j.taap.2006.08.013. Epub 2006 Oct 28.
7
Nanotechnology: the next big thing, or much ado about nothing?
Ann Occup Hyg. 2007 Jan;51(1):1-12. doi: 10.1093/annhyg/mel071. Epub 2006 Oct 14.
8
Translocation of inhaled ultrafine manganese oxide particles to the central nervous system.
Environ Health Perspect. 2006 Aug;114(8):1172-8. doi: 10.1289/ehp.9030.
10
Soluble nickel interferes with cellular iron homeostasis.
Mol Cell Biochem. 2005 Nov;279(1-2):157-62. doi: 10.1007/s11010-005-8288-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验