Suppr超能文献

一种连续流、微流控分段收集装置。

A continuous-flow, microfluidic fraction collection device.

机构信息

Department of Chemistry and Biochemistry, Florida State University, Tallahassee, 32306, USA.

出版信息

J Chromatogr A. 2010 Jul 9;1217(28):4743-8. doi: 10.1016/j.chroma.2010.05.023.

Abstract

A microfluidic device is presented that performs electrophoretic separation coupled with fraction collection. Effluent from the 3.5 cm separation channel was focused via two sheath flow channels into one of seven collection channels. By holding the collection channels at ground potential and varying the voltage ratio at the two sheath flow channels, the separation effluent was directed to either specific collection channels, or could be swept past all channels in a defined time period. As the sum of the voltages applied to the two sheath flow channels was constant, the electric field remained at 275 V/cm during the separation regardless of the collection channel used. The constant potential in the separation channel allowed uninterrupted separation for late-migrating peaks while early-migrating peaks were being collected. To minimize the potential for carryover between fractions, the device geometry was optimized using a three-level factorial model. The optimum conditions were a 22.5° angle between the sheath flow channels and the separation channel, and a 350 μm length of channel between the separation outlet and the fraction channels. Using these optimized dimensions, the device performance was evaluated by separation and fraction collection of a fluorescently-labeled amino acid mixture. The ability to fraction collect on a microfluidic platform will be especially useful during automated or continuous operation of these devices or to collect precious samples.

摘要

本文介绍了一种微流控装置,可实现电泳分离与馏分收集的偶联。3.5cm 分离通道的流出物通过两个鞘流通道聚焦到七个收集通道之一。通过将收集通道保持在接地电位,并改变两个鞘流通道的电压比,可以将分离流出物引导到特定的收集通道,或者可以在定义的时间段内扫过所有通道。由于施加到两个鞘流通道的电压总和保持不变,因此无论使用哪个收集通道,分离过程中的电场都保持在 275V/cm。分离通道中的恒电位允许在收集较早迁移的峰的同时,不间断地进行较晚迁移的峰的分离。为了最大限度地减少馏分之间的交叉污染的可能性,使用三水平析因模型优化了器件几何形状。最佳条件是鞘流通道与分离通道之间的夹角为 22.5°,以及分离出口与馏分通道之间的通道长度为 350μm。使用这些优化的尺寸,通过荧光标记的氨基酸混合物的分离和馏分收集评估了器件性能。在这些设备的自动化或连续操作期间,或者在收集珍贵样品时,能够在微流控平台上进行馏分收集将特别有用。

相似文献

1
A continuous-flow, microfluidic fraction collection device.
J Chromatogr A. 2010 Jul 9;1217(28):4743-8. doi: 10.1016/j.chroma.2010.05.023.
2
Integrated electrokinetic sample fractionation and solid-phase extraction in microfluidic devices.
Electrophoresis. 2012 Nov;33(21):3151-8. doi: 10.1002/elps.201200286. Epub 2012 Sep 5.
3
Microfluidic flow counterbalanced capillary electrophoresis.
Analyst. 2013 Apr 7;138(7):2126-33. doi: 10.1039/c3an36624c. Epub 2013 Feb 19.
7
Continuous analysis of dye-loaded, single cells on a microfluidic chip.
Lab Chip. 2011 Apr 7;11(7):1333-41. doi: 10.1039/c0lc00370k. Epub 2011 Feb 16.
8
Separation of proteins using a novel two-depth miniaturized free-flow electrophoresis device with multiple outlet fractionation channels.
J Chromatogr A. 2009 Nov 20;1216(47):8265-9. doi: 10.1016/j.chroma.2009.06.079. Epub 2009 Jul 5.
9
Continuous dielectrophoretic cell separation microfluidic device.
Lab Chip. 2007 Feb;7(2):239-48. doi: 10.1039/b613344d. Epub 2006 Dec 1.
10
Sample injection and electrophoretic separation on a simple laminated paper based analytical device.
Electrophoresis. 2016 Feb;37(3):476-81. doi: 10.1002/elps.201500321. Epub 2015 Nov 27.

引用本文的文献

2
Terahertz refractive phenotype of living cells.
Front Bioeng Biotechnol. 2023 Jan 10;10:1105249. doi: 10.3389/fbioe.2022.1105249. eCollection 2022.
4
A multifunctional pipette.
Lab Chip. 2012 Apr 7;12(7):1255-61. doi: 10.1039/c2lc20906c. Epub 2012 Jan 17.
5
A microfluidic device for the automated derivatization of free fatty acids to fatty acid methyl esters.
Analyst. 2012 Feb 21;137(4):840-6. doi: 10.1039/c2an15911b. Epub 2011 Dec 14.
6
Comparison of separation performance of laser-ablated and wet-etched microfluidic devices.
Anal Bioanal Chem. 2011 Feb;399(4):1473-9. doi: 10.1007/s00216-010-4144-3. Epub 2010 Sep 9.

本文引用的文献

1
Generating electrospray from microchip devices using electroosmotic pumping.
Anal Chem. 1997 Jul 1;69(13):2617. doi: 10.1021/ac971475k.
5
Droplet-based microfluidic synthesis of anisotropic metal nanocrystals.
Small. 2009 Dec;5(24):2828-34. doi: 10.1002/smll.200901453.
7
Micro free-flow electrophoresis: theory and applications.
Anal Bioanal Chem. 2009 May;394(1):187-98. doi: 10.1007/s00216-009-2656-5. Epub 2009 Mar 17.
8
Serial-to-parallel interfaces for efficient sample transfer on microfluidic devices.
Anal Chem. 2009 Feb 15;81(4):1477-81. doi: 10.1021/ac801774p.
9
Electrokinetic sorting and collection of fractions for preparative capillary electrophoresis on a chip.
Lab Chip. 2008 May;8(5):801-9. doi: 10.1039/b717785b. Epub 2008 Mar 18.
10
Design, simulation, and optimization of a miniaturized device for size-fractioned DNA extraction.
Electrophoresis. 2007 Dec;28(24):4661-7. doi: 10.1002/elps.200700226.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验