Suppr超能文献

电子舌的最新进展。

Recent advances in electronic tongues.

机构信息

UFScar, campus Sorocaba, 18052-780 Sorocaba, SP, Brazil.

出版信息

Analyst. 2010 Oct;135(10):2481-95. doi: 10.1039/c0an00292e. Epub 2010 Aug 20.

Abstract

This minireview describes the main developments of electronic tongues (e-tongues) and taste sensors in recent years, with a summary of the principles of detection and materials used in the sensing units. E-tongues are sensor arrays capable of distinguishing very similar liquids employing the concept of global selectivity, where the difference in the electrical response of different materials serves as a fingerprint for the analysed sample. They have been widely used for the analysis of wines, fruit juices, coffee, milk and beverages, in addition to the detection of trace amounts of impurities or pollutants in waters. Among the various principles of detection, electrochemical measurements and impedance spectroscopy are the most prominent. With regard to the materials for the sensing units, in most cases use is made of ultrathin films produced in a layer-by-layer fashion to yield higher sensitivity with the advantage of control of the film molecular architecture. The concept of e-tongues has been extended to biosensing by using sensing units capable of molecular recognition, as in films with immobilized antigens or enzymes with specific recognition for clinical diagnosis. Because the identification of samples is basically a classification task, there has been a trend to use artificial intelligence and information visualization methods to enhance the performance of e-tongues.

摘要

本文综述了近年来电子舌(e-tongues)和味觉传感器的主要发展情况,总结了检测原理和传感单元中使用的材料。电子舌是一种能够利用整体选择性概念区分非常相似液体的传感器阵列,其中不同材料的电响应差异可用作被分析样品的指纹。它们已广泛用于葡萄酒、果汁、咖啡、牛奶和饮料的分析,以及水中痕量杂质或污染物的检测。在各种检测原理中,电化学测量和阻抗谱法最为突出。至于传感单元的材料,在大多数情况下,使用层层制备的超薄薄膜以提高灵敏度,同时具有控制薄膜分子结构的优点。通过使用能够进行分子识别的传感单元,电子舌的概念已扩展到生物传感领域,例如固定有抗原或对临床诊断具有特定识别能力的酶的薄膜。由于样品的识别基本上是分类任务,因此已经出现了使用人工智能和信息可视化方法来增强电子舌性能的趋势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验