Suppr超能文献

机器学习辅助的先进电化学生物传感器

Machine-Learning-Aided Advanced Electrochemical Biosensors.

作者信息

Bocan Andrei, Siavash Moakhar Roozbeh, Del Real Mata Carolina, Petkun Max, De Iure-Grimmel Tristan, Yedire Sripadh Guptha, Shieh Hamed, Khorrami Jahromi Arash, Mahshid Sahar Sadat, Mahshid Sara

机构信息

Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada.

Beeta Biomed Inc., Clinical Innovation Platform, Montreal General Hospital, Montreal, Quebec, H3G 1A4, Canada.

出版信息

Adv Mater. 2025 Aug;37(33):e2417520. doi: 10.1002/adma.202417520. Epub 2025 Jun 9.

Abstract

Electrochemical biosensors offer numerous advantages, including high sensitivity, specificity, portability, ease of use, rapid response times, versatility, and multiplexing capability. Advanced materials and nanomaterials enhance electrochemical biosensors by improving sensitivity, response, and portability. Machine learning (ML) integration with electrochemical biosensors is also gaining traction, being particularly promising for addressing challenges such as electrode fouling, interference from non-target analytes, variability in testing conditions, and inconsistencies across samples. ML enhances data processing and analysis efficiency, generating actionable results with minimal information loss. Additionally, ML is well-suited for handling large, noisy datasets often generated in continuous monitoring applications. Beyond data analysis, ML can also help optimize biosensor design and function. While extensive research has expanded applications of advanced and nanomaterials-enhanced electrochemical biosensors and ML in their respective fields, fewer studies explore their combined potential in diagnostics; their synergy holds immense promise for advancing diagnostics and screening. This review highlights recent ML applications in advanced and nanomaterial-enhanced electrochemical biosensing, categorized into biocatalytic sensing, affinity-based sensing, bioreceptor-free sensing, electrochemiluminescence, high-throughput sensing, and continuous monitoring. Together, these developments underscore the transformative potential of ML-aided advanced/nanomaterial-enhanced electrochemical biosensors in diagnostics and screening, paving new pathways in the field.

摘要

电化学生物传感器具有众多优势,包括高灵敏度、特异性、便携性、易用性、快速响应时间、多功能性和多重检测能力。先进材料和纳米材料通过提高灵敏度、响应性和便携性来增强电化学生物传感器。机器学习(ML)与电化学生物传感器的集成也越来越受到关注,对于解决诸如电极污染、非目标分析物的干扰、测试条件的变化以及样品之间的不一致性等挑战尤其有前景。ML提高了数据处理和分析效率,以最小的信息损失产生可操作的结果。此外,ML非常适合处理连续监测应用中经常产生的大量嘈杂数据集。除了数据分析,ML还可以帮助优化生物传感器的设计和功能。虽然广泛的研究已经扩展了先进材料和纳米材料增强的电化学生物传感器以及ML在各自领域的应用,但较少有研究探索它们在诊断中的联合潜力;它们的协同作用在推进诊断和筛查方面具有巨大的前景。本综述重点介绍了ML在先进材料和纳米材料增强的电化学生物传感中的最新应用,分为生物催化传感、基于亲和力的传感、无生物受体传感、电化学发光、高通量传感和连续监测。总之,这些进展凸显了ML辅助的先进/纳米材料增强的电化学生物传感器在诊断和筛查中的变革潜力,为该领域开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/458c/12369699/79e8969dfe75/ADMA-37-2417520-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验