Suppr超能文献

从特定生化物质的多种扰动测量中推断信号通路拓扑结构。

Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species.

出版信息

Sci Signal. 2010;3(134):ra20.

Abstract

The specification of biological decisions by signaling pathways is encoded by the interplay between activation dynamics and network topologies. Although we can describe complex networks, we cannot easily determine which topology the cell actually uses to transduce a specific signal. Experimental testing of all plausible topologies is infeasible because of the combinatorially large number of experiments required to explore the complete hypothesis space. Here, we demonstrate that Bayesian inference-based modeling provides an approach to explore and constrain this hypothesis space,permitting the rational ranking of pathway models. Our approach can use measurements of a limited number of biochemical species when combined with multiple perturbations. As proof of concept, we examined the activation of the extracellular signal-regulated kinase (ERK) pathway by epidermal growth factor. The predicted and experimentally validated model shows that both Raf-1 and, unexpectedly,B-Raf are needed to fully activate ERK in two different cell lines. Thus, our formal methodology rationally infers evidentially supported pathway topologies even when a limited number of biochemical and kinetic measurements are available.

摘要

信号通路通过信号来决定生物的行为,这种决定由激活动力学和网络拓扑结构的相互作用所编码。尽管我们可以描述复杂的网络,但我们却很难确定细胞实际上使用哪种拓扑结构来传递特定的信号。由于需要进行大量的实验来探索完整的假设空间,因此对所有可能的拓扑结构进行实验测试是不可行的。在这里,我们证明了基于贝叶斯推理的建模为探索和约束该假设空间提供了一种方法,从而可以对途径模型进行合理的排序。我们的方法在与多种扰动结合使用时,可以利用有限数量的生化物种的测量值。作为概念验证,我们检查了表皮生长因子对细胞外信号调节激酶(ERK)途径的激活作用。预测和实验验证的模型表明,在两种不同的细胞系中,Raf-1 和出人意料的 B-Raf 都需要完全激活 ERK。因此,即使可用的生化和动力学测量值有限,我们的正式方法也可以合理地推断出有证据支持的途径拓扑结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验