DFG Research Center Molecular Physiology of the Brain, Abteilung Neuro- und Sinnesphysiologie, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany.
Neuroscience. 2010 Nov 24;171(1):300-15. doi: 10.1016/j.neuroscience.2010.08.031. Epub 2010 Aug 21.
Methyl-CpG-binding protein 2 (MeCP2) deficiency causes Rett syndrome (RTT), a neurodevelopmental disorder characterized by severe cognitive impairment, synaptic dysfunction, and hyperexcitability. Previously we reported that the hippocampus of MeCP2-deficient mice (Mecp2(-/y)), a mouse model for RTT, is more susceptible to hypoxia. To identify the underlying mechanisms we now focused on the anoxic responses of wildtype (WT) and Mecp2(-/y) CA1 neurons in acute hippocampal slices. Intracellular recordings revealed that Mecp2(-/y) neurons show only reduced or no hyperpolarizations early during cyanide-induced anoxia, suggesting potassium channel (K(+) channel) dysfunction. Blocking adenosine-5'-triphosphate-sensitive K(+) channels (K(ATP-)) and big-conductance Ca(2+)-activated K(+) channels (BK-channels) did not affect the early anoxic hyperpolarization in either genotype. However, blocking Ca(2+) release from the endoplasmic reticulum almost abolished the anoxic hyperpolarizations in Mecp2(-/y) neurons. Single-channel recordings confirmed that neither K(ATP)- nor BK-channels are the sole mediators of the early anoxic hyperpolarization. Instead, anoxia Ca(2+)-dependently activated various small/intermediate-conductance K(+) channels in WT neurons, which was less evident in Mecp2(-/y) neurons. Yet, pharmacologically increasing the Ca(2+) sensitivity of small/intermediate-conductance K(Ca) channels fully restored the anoxic hyperpolarization in Mecp2(-/y) neurons. Furthermore, Ca(2+) imaging unveiled lower intracellular Ca(2+) levels in resting Mecp2(-/y) neurons and reduced anoxic Ca(2+) transients with diminished Ca(2+) release from intracellular stores. In conclusion, the enhanced hypoxia susceptibility of Mecp2(-/y) hippocampus is primarily associated with disturbed Ca(2+) homeostasis and diminished Ca(2+) rises during anoxia. This secondarily attenuates the activation of K(Ca) channels and thereby increases the hypoxia susceptibility of Mecp2(-/y) neuronal networks. Since cytosolic Ca(2+) levels also determine neuronal excitability and synaptic plasticity, Ca(2+) homeostasis may constitute a promising target for pharmacotherapy in RTT.
甲基化 CpG 结合蛋白 2(MeCP2)缺乏会导致雷特综合征(RTT),这是一种以严重认知障碍、突触功能障碍和过度兴奋为特征的神经发育障碍。之前我们曾报道过,RTT 的小鼠模型 MeCP2 缺陷型(Mecp2(-/y))小鼠的海马体对缺氧更为敏感。为了确定潜在的机制,我们现在专注于急性海马切片中野生型(WT)和 Mecp2(-/y) CA1 神经元的缺氧反应。细胞内记录显示,Mecp2(-/y)神经元在氰化物诱导的缺氧早期仅表现出减少或没有超极化,表明钾通道(K+通道)功能障碍。阻断三磷酸腺苷敏感的 K+通道(KATP-)和大电导钙激活的 K+通道(BK 通道)对两种基因型的早期缺氧超极化均无影响。然而,阻断内质网中 Ca2+的释放几乎完全消除了 Mecp2(-/y)神经元的缺氧超极化。单通道记录证实,KATP-和 BK 通道都不是早期缺氧超极化的唯一介导者。相反,缺氧 Ca2+依赖性地激活了 WT 神经元中的各种小/中电导 K+通道,而 Mecp2(-/y)神经元中的情况则不太明显。然而,药理学上增加小/中电导 KCa 通道的 Ca2+敏感性可完全恢复 Mecp2(-/y)神经元的缺氧超极化。此外,Ca2+成像揭示了静止 Mecp2(-/y)神经元中较低的细胞内 Ca2+水平,以及缺氧 Ca2+瞬变减少,伴有细胞内储存 Ca2+释放减少。总之,Mecp2(-/y)海马体对缺氧的敏感性增加主要与 Ca2+稳态紊乱和缺氧期间 Ca2+升高减少有关。这继而减弱了 KCa 通道的激活,从而增加了 Mecp2(-/y)神经元网络对缺氧的敏感性。由于细胞溶质 Ca2+水平也决定神经元兴奋性和突触可塑性,因此 Ca2+稳态可能成为 RTT 药物治疗的有前途的靶点。