Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Georg-August-Universität Göttingen, Universitätsmedizin Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany.
Klinik für Neurologie, Georg-August-Universität Göttingen, Universitätsmedizin Göttingen, Robert-Koch Straße 40, D-37075 Göttingen, Germany.
Cells. 2020 Nov 24;9(12):2539. doi: 10.3390/cells9122539.
Rett syndrome (RTT) is a neurodevelopmental disorder associated with disturbed neuronal responsiveness and impaired neuronal network function. Furthermore, mitochondrial alterations and a weakened cellular redox-homeostasis are considered part of the complex pathogenesis. So far, overshooting redox-responses of MeCP2-deficient neurons were observed during oxidant-mediated stress, hypoxia and mitochondrial inhibition. To further clarify the relevance of the fragile redox-balance for the neuronal (dys)function in RTT, we addressed more physiological stimuli and quantified the subcellular redox responses to neurotransmitter-stimulation. The roGFP redox sensor was expressed in either the cytosol or the mitochondrial matrix of cultured mouse hippocampal neurons, and the responses to transient stimulation by glutamate, serotonin, dopamine and norepinephrine were characterized. Each neurotransmitter evoked more intense oxidizing responses in the cytosol of MeCP2-deficient than in wildtype neurons. In the mitochondrial matrix the neurotransmitter-evoked oxidizing changes were more moderate and more uniform among genotypes. This identifies the cytosol as an important reactive oxygen species (ROS) source and as less stably redox buffered. Fura-2 imaging and extracellular Ca withdrawal confirmed cytosolic Ca transients as a contributing factor of neurotransmitter-induced redox responses and their potentiation in the cytosol of MeCP2-deficient neurons. Chemical uncoupling demonstrated the involvement of mitochondria. Nevertheless, cytosolic NADPH- and xanthine oxidases interact to play the leading role in the neurotransmitter-mediated oxidizing responses. As exaggerated redox-responses were already evident in neonatal MeCP2-deficient neurons, they may contribute remarkably to the altered neuronal network performance and the disturbed neuronal signaling, which are among the hallmarks of RTT.
雷特综合征(RTT)是一种与神经元反应失调和神经元网络功能受损相关的神经发育障碍。此外,线粒体改变和细胞氧化还原稳态减弱被认为是复杂发病机制的一部分。到目前为止,在氧化剂介导的应激、缺氧和线粒体抑制下,观察到 MeCP2 缺陷神经元的氧化还原反应过度。为了进一步阐明脆弱的氧化还原平衡与 RTT 中神经元(功能)障碍的相关性,我们研究了更生理的刺激,并量化了神经递质刺激下的亚细胞氧化还原反应。roGFP 氧化还原传感器在培养的小鼠海马神经元的细胞质或线粒体基质中表达,并对谷氨酸、血清素、多巴胺和去甲肾上腺素的短暂刺激的反应进行了表征。每种神经递质在 MeCP2 缺陷神经元的细胞质中引起的氧化反应比野生型神经元更强烈。在线粒体基质中,神经递质引起的氧化变化更为温和,在基因型之间更为均匀。这表明细胞质是一个重要的活性氧(ROS)来源,并且氧化还原缓冲能力不稳定。Fura-2 成像和细胞外 Ca 撤出证实细胞质 Ca 瞬变是神经递质诱导的氧化还原反应及其在 MeCP2 缺陷神经元细胞质中增强的一个促成因素。化学解偶联表明线粒体的参与。然而,细胞质 NADPH 和黄嘌呤氧化酶相互作用,在神经递质介导的氧化反应中发挥主导作用。由于在新生 MeCP2 缺陷神经元中已经出现了夸大的氧化还原反应,它们可能对改变的神经元网络性能和神经元信号传递的干扰有显著贡献,这是 RTT 的标志之一。