Suppr超能文献

自我发现使机器人能够进行社会认知:你是我的老师吗?

Self discovery enables robot social cognition: are you my teacher?

机构信息

Department of Computer Science, University of Vermont, Burlington, VT, USA.

出版信息

Neural Netw. 2010 Oct-Nov;23(8-9):1113-24. doi: 10.1016/j.neunet.2010.07.009. Epub 2010 Aug 8.

Abstract

Infants exploit the perception that others are 'like me' to bootstrap social cognition (Meltzoff, 2007a). This paper demonstrates how the above theory can be instantiated in a social robot that uses itself as a model to recognize structural similarities with other robots; this thereby enables the student to distinguish between appropriate and inappropriate teachers. This is accomplished by the student robot first performing self-discovery, a phase in which it uses actuation-perception relationships to infer its own structure. Second, the student models a candidate teacher using a vision-based active learning approach to create an approximate physical simulation of the teacher. Third, the student determines that the teacher is structurally similar (but not necessarily visually similar) to itself if it can find a neural controller that allows its self model (created in the first phase) to reproduce the perceived motion of the teacher model (created in the second phase). Fourth, the student uses the neural controller (created in the third phase) to move, resulting in imitation of the teacher. Results with a physical student robot and two physical robot teachers demonstrate the effectiveness of this approach. The generalizability of the proposed model allows it to be used over variations in the demonstrator: The student robot would still be able to imitate teachers of different sizes and at different distances from itself, as well as different positions in its field of view, because change in the interrelations of the teacher's body parts are used for imitation, rather than absolute geometric properties.

摘要

婴儿利用他人与“我”相似的感知来引导社会认知(Meltzoff,2007a)。本文展示了如何在一个社交机器人中实例化上述理论,该机器人使用自身作为模型来识别与其他机器人的结构相似性;这使学生能够区分合适和不合适的教师。学生机器人通过以下三个步骤实现这一点。首先,学生进行自我发现,在此阶段,它使用动作感知关系来推断自己的结构。其次,学生使用基于视觉的主动学习方法对候选教师进行建模,以创建教师的近似物理模拟。第三,学生确定如果可以找到一个神经控制器,使其自身模型(在第一阶段创建)能够再现教师模型的感知运动,则教师在结构上与其相似(但不一定在视觉上相似)。第四,学生使用神经控制器(在第三阶段创建)进行移动,从而模仿教师。使用物理学生机器人和两个物理机器人教师的结果证明了这种方法的有效性。所提出模型的通用性允许它在演示者的变化中使用:学生机器人仍然能够模仿不同大小和与自身不同距离的教师,以及其视野中的不同位置,因为模仿是基于教师身体部位的相互关系的变化,而不是绝对的几何属性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验