Suppr超能文献

一种基于贝叶斯发展方法的机器人目标导向模仿学习

A Bayesian Developmental Approach to Robotic Goal-Based Imitation Learning.

作者信息

Chung Michael Jae-Yoon, Friesen Abram L, Fox Dieter, Meltzoff Andrew N, Rao Rajesh P N

机构信息

Department of Computer Science & Engineering, University of Washington, Seattle, WA, United States of America.

Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, United States of America.

出版信息

PLoS One. 2015 Nov 4;10(11):e0141965. doi: 10.1371/journal.pone.0141965. eCollection 2015.

Abstract

A fundamental challenge in robotics today is building robots that can learn new skills by observing humans and imitating human actions. We propose a new Bayesian approach to robotic learning by imitation inspired by the developmental hypothesis that children use self-experience to bootstrap the process of intention recognition and goal-based imitation. Our approach allows an autonomous agent to: (i) learn probabilistic models of actions through self-discovery and experience, (ii) utilize these learned models for inferring the goals of human actions, and (iii) perform goal-based imitation for robotic learning and human-robot collaboration. Such an approach allows a robot to leverage its increasing repertoire of learned behaviors to interpret increasingly complex human actions and use the inferred goals for imitation, even when the robot has very different actuators from humans. We demonstrate our approach using two different scenarios: (i) a simulated robot that learns human-like gaze following behavior, and (ii) a robot that learns to imitate human actions in a tabletop organization task. In both cases, the agent learns a probabilistic model of its own actions, and uses this model for goal inference and goal-based imitation. We also show that the robotic agent can use its probabilistic model to seek human assistance when it recognizes that its inferred actions are too uncertain, risky, or impossible to perform, thereby opening the door to human-robot collaboration.

摘要

当今机器人技术面临的一个基本挑战是制造能够通过观察人类和模仿人类动作来学习新技能的机器人。我们受发展假设启发,提出了一种新的基于贝叶斯方法的机器人模仿学习方式,该假设认为儿童利用自身经验来启动意图识别和基于目标的模仿过程。我们的方法允许自主智能体:(i)通过自我发现和经验学习动作的概率模型;(ii)利用这些学习到的模型推断人类动作的目标;(iii)进行基于目标的模仿以实现机器人学习和人机协作。这种方法使机器人能够利用其不断增加的学习行为库来解读日益复杂的人类动作,并将推断出的目标用于模仿,即使机器人的执行器与人类有很大不同。我们通过两种不同场景展示我们的方法:(i)一个学习类似人类注视跟随行为的模拟机器人;(ii)一个在桌面整理任务中学习模仿人类动作的机器人。在这两种情况下,智能体都学习自身动作的概率模型,并将该模型用于目标推断和基于目标的模仿。我们还表明,当机器人识别到其推断的动作过于不确定、有风险或无法执行时,它可以利用其概率模型寻求人类帮助,从而为人机协作打开大门。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验