Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
FASEB J. 2010 Dec;24(12):4977-88. doi: 10.1096/fj.10-162941. Epub 2010 Aug 23.
The Caenorhabditis elegans mitochondrial (Mit) mutants have disrupted mitochondrial electron transport chain (ETC) functionality, yet, surprisingly, they are long lived. We have previously proposed that Mit mutants supplement their energy needs by exploiting alternate energy production pathways normally used by wild-type animals only when exposed to hypoxic conditions. We have also proposed that longevity in the Mit mutants arises as a property of their new metabolic state. If longevity does arise as a function of metabolic state, we would expect to find a common metabolic signature among these animals. To test these predictions, we established a novel approach monitoring the C. elegans exometabolism as a surrogate marker for internal metabolic events. Using HPLC-ultraviolet-based metabolomics and multivariate analyses, we show that long-lived clk-1(qm30) and isp-1(qm150) Mit mutants have a common metabolic profile that is distinct from that of aerobically cultured wild-type animals and, unexpectedly, wild-type animals cultured under severe oxygen deprivation. Moreover, we show that 2 short-lived mitochondrial ETC mutants, mev-1(kn1) and ucr-2.3(pk732), also share a common metabolic signature that is unique. We show that removal of soluble fumarate reductase unexpectedly increases health span in several genetically defined Mit mutants, identifying at least 1 alternate energy production pathway, malate dismutation, that is operative in these animals. Our study suggests long-lived, genetically specified Mit mutants employ a novel metabolism and that life span may well arise as a function of metabolic state.
秀丽隐杆线虫的线粒体(Mit)突变体的线粒体电子传递链(ETC)功能受到破坏,但令人惊讶的是,它们的寿命很长。我们之前提出,Mit 突变体通过利用野生型动物在缺氧条件下才会使用的替代能量产生途径来补充其能量需求。我们还提出,Mit 突变体的长寿是其新代谢状态的特性。如果长寿确实是代谢状态的一种功能,我们预计会在这些动物中找到共同的代谢特征。为了验证这些预测,我们建立了一种新的方法,通过监测秀丽隐杆线虫的外代谢作为内部代谢事件的替代标志物。我们使用 HPLC-紫外基于代谢组学和多元分析,表明长寿命的 clk-1(qm30)和 isp-1(qm150) Mit 突变体具有独特的共同代谢特征,与需氧培养的野生型动物和意外的严重缺氧培养的野生型动物明显不同。此外,我们还表明,2 种短寿命的线粒体 ETC 突变体,mev-1(kn1)和 ucr-2.3(pk732),也具有独特的共同代谢特征。我们表明,去除可溶性延胡索酸还原酶出人意料地增加了几种遗传定义的 Mit 突变体的健康跨度,确定了至少 1 种替代的能量产生途径,即苹果酸歧化作用,在这些动物中是有效的。我们的研究表明,长寿命、遗传定义的 Mit 突变体采用了一种新的代谢方式,寿命可能确实是代谢状态的一种功能。