Suppr超能文献

细菌、酵母、线虫和果蝇:利用简单的模式生物研究人类线粒体疾病。

Bacteria, yeast, worms, and flies: exploiting simple model organisms to investigate human mitochondrial diseases.

作者信息

Rea Shane L, Graham Brett H, Nakamaru-Ogiso Eiko, Kar Adwitiya, Falk Marni J

机构信息

Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA.

出版信息

Dev Disabil Res Rev. 2010;16(2):200-18. doi: 10.1002/ddrr.114.

Abstract

The extensive conservation of mitochondrial structure, composition, and function across evolution offers a unique opportunity to expand our understanding of human mitochondrial biology and disease. By investigating the biology of much simpler model organisms, it is often possible to answer questions that are unreachable at the clinical level. Here, we review the relative utility of four different model organisms, namely the bacterium Escherichia coli, the yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, in studying the role of mitochondrial proteins relevant to human disease. E. coli are single cell, prokaryotic bacteria that have proven to be a useful model system in which to investigate mitochondrial respiratory chain protein structure and function. S. cerevisiae is a single-celled eukaryote that can grow equally well by mitochondrial-dependent respiration or by ethanol fermentation, a property that has proven to be a veritable boon for investigating mitochondrial functionality. C. elegans is a multicellular, microscopic worm that is organized into five major tissues and has proven to be a robust model animal for in vitro and in vivo studies of primary respiratory chain dysfunction and its potential therapies in humans. Studied for over a century, D. melanogaster is a classic metazoan model system offering an abundance of genetic tools and reagents that facilitates investigations of mitochondrial biology using both forward and reverse genetics. The respective strengths and limitations of each species relative to mitochondrial studies are explored. In addition, an overview is provided of major discoveries made in mitochondrial biology in each of these four model systems.

摘要

线粒体的结构、组成和功能在进化过程中广泛保守,这为拓展我们对人类线粒体生物学和疾病的理解提供了独特的机会。通过研究更为简单的模式生物的生物学特性,常常能够解答在临床层面无法触及的问题。在此,我们综述了四种不同模式生物,即大肠杆菌、酿酒酵母、秀丽隐杆线虫和黑腹果蝇,在研究与人类疾病相关的线粒体蛋白作用方面的相对效用。大肠杆菌是单细胞原核细菌,已被证明是研究线粒体呼吸链蛋白结构和功能的有用模式系统。酿酒酵母是单细胞真核生物,它可以通过线粒体依赖的呼吸作用或乙醇发酵同样良好地生长,这一特性已被证明对研究线粒体功能而言是实实在在的福音。秀丽隐杆线虫是一种多细胞的微观蠕虫,由五个主要组织构成,已被证明是用于人类原发性呼吸链功能障碍及其潜在疗法的体外和体内研究的强大模式动物。黑腹果蝇已有一个多世纪的研究历史,是经典的后生动物模式系统,提供了丰富的遗传工具和试剂,便于使用正向和反向遗传学研究线粒体生物学。探讨了每个物种相对于线粒体研究的各自优势和局限性。此外,还概述了在这四个模式系统中每个系统在线粒体生物学方面取得的主要发现。

相似文献

2
Characterizing pathogenic processes in Batten disease: use of small eukaryotic model systems.
Biochim Biophys Acta. 2006 Oct;1762(10):906-19. doi: 10.1016/j.bbadis.2006.08.010. Epub 2006 Sep 1.
4
Tailoring the genome: the power of genetic approaches.
Nat Genet. 2003 Mar;33 Suppl:276-84. doi: 10.1038/ng1115.
6
Biochemical Genetic Pathways that Modulate Aging in Multiple Species.
Cold Spring Harb Perspect Med. 2015 Nov 2;5(11):a025114. doi: 10.1101/cshperspect.a025114.
8
Microbial genes in the human genome: lateral transfer or gene loss?
Science. 2001 Jun 8;292(5523):1903-6. doi: 10.1126/science.1061036. Epub 2001 May 17.
9
A general tendency for conservation of protein length across eukaryotic kingdoms.
Mol Biol Evol. 2005 Jan;22(1):142-7. doi: 10.1093/molbev/msh263. Epub 2004 Sep 15.
10
Comparative genomics of the eukaryotes.
Science. 2000 Mar 24;287(5461):2204-15. doi: 10.1126/science.287.5461.2204.

引用本文的文献

1
A high-resolution bovine mitochondrial co-expression network.
Biol Open. 2025 Feb 15;14(2). doi: 10.1242/bio.061630. Epub 2025 Feb 3.
2
Mutations of the Electron Transport Chain Affect Lifespan and ROS Levels in .
Antioxidants (Basel). 2025 Jan 10;14(1):76. doi: 10.3390/antiox14010076.
3
4
A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish.
Genes (Basel). 2022 Jul 23;13(8):1317. doi: 10.3390/genes13081317.
5
Primary Coenzyme Q10 Deficiency-7 and Pathogenic Variants: Clinical Presentation, Biochemical Analyses, and Treatment.
Front Genet. 2022 Jan 26;12:776807. doi: 10.3389/fgene.2021.776807. eCollection 2021.
6
Leigh Syndrome: A Tale of Two Genomes.
Front Physiol. 2021 Aug 11;12:693734. doi: 10.3389/fphys.2021.693734. eCollection 2021.
9
Systems Biochemistry Approaches to Defining Mitochondrial Protein Function.
Cell Metab. 2020 Apr 7;31(4):669-678. doi: 10.1016/j.cmet.2020.03.011.
10
Anaerobic Transcription by OxyR: A Novel Paradigm for Nitrosative Stress.
Antioxid Redox Signal. 2020 Apr 20;32(12):803-816. doi: 10.1089/ars.2019.7921. Epub 2019 Dec 3.

本文引用的文献

1
Reactive Oxygen Species and Aging in Caenorhabditis elegans: Causal or Casual Relationship?
Antioxid Redox Signal. 2010 Dec 15;13(12):1911-53. doi: 10.1089/ars.2010.3215. Epub 2010 Sep 13.
2
The architecture of respiratory complex I.
Nature. 2010 May 27;465(7297):441-5. doi: 10.1038/nature09066.
3
Oxidative protein folding in the endoplasmic reticulum: tight links to the mitochondria-associated membrane (MAM).
Biochim Biophys Acta. 2010 Aug;1798(8):1465-73. doi: 10.1016/j.bbamem.2010.04.009. Epub 2010 Apr 27.
4
Is Alzheimer's disease a disorder of mitochondria-associated membranes?
J Alzheimers Dis. 2010;20 Suppl 2:S281-92. doi: 10.3233/JAD-2010-100495.
5
Decreased energy metabolism extends life span in Caenorhabditis elegans without reducing oxidative damage.
Genetics. 2010 Jun;185(2):559-71. doi: 10.1534/genetics.110.115378. Epub 2010 Apr 9.
6
VDAC, a multi-functional mitochondrial protein regulating cell life and death.
Mol Aspects Med. 2010 Jun;31(3):227-85. doi: 10.1016/j.mam.2010.03.002. Epub 2010 Mar 23.
7
Two modes of mitochondrial dysfunction lead independently to lifespan extension in Caenorhabditis elegans.
Aging Cell. 2010 Jun;9(3):433-47. doi: 10.1111/j.1474-9726.2010.00571.x. Epub 2010 Mar 19.
8
Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response.
PLoS Biol. 2010 Mar 9;8(3):e1000328. doi: 10.1371/journal.pbio.1000328.
9
Neurologic dysfunction and male infertility in Drosophila porin mutants: a new model for mitochondrial dysfunction and disease.
J Biol Chem. 2010 Apr 9;285(15):11143-53. doi: 10.1074/jbc.M109.080317. Epub 2010 Jan 28.
10
Gene expression in a Drosophila model of mitochondrial disease.
PLoS One. 2010 Jan 6;5(1):e8549. doi: 10.1371/journal.pone.0008549.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验