Suppr超能文献

基于 Alpha 形状建模的蛋白质-DNA 相互作用预测的判别函数。

A discriminatory function for prediction of protein-DNA interactions based on alpha shape modeling.

机构信息

Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.

出版信息

Bioinformatics. 2010 Oct 15;26(20):2541-8. doi: 10.1093/bioinformatics/btq478. Epub 2010 Aug 23.

Abstract

MOTIVATION

Protein-DNA interaction has significant importance in many biological processes. However, the underlying principle of the molecular recognition process is still largely unknown. As more high-resolution 3D structures of protein-DNA complex are becoming available, the surface characteristics of the complex become an important research topic.

RESULT

In our work, we apply an alpha shape model to represent the surface structure of the protein-DNA complex and developed an interface-atom curvature-dependent conditional probability discriminatory function for the prediction of protein-DNA interaction. The interface-atom curvature-dependent formalism captures atomic interaction details better than the atomic distance-based method. The proposed method provides good performance in discriminating the native structures from the docking decoy sets, and outperforms the distance-dependent formalism in terms of the z-score. Computer experiment results show that the curvature-dependent formalism with the optimal parameters can achieve a native z-score of -8.17 in discriminating the native structure from the highest surface-complementarity scored decoy set and a native z-score of -7.38 in discriminating the native structure from the lowest RMSD decoy set. The interface-atom curvature-dependent formalism can also be used to predict apo version of DNA-binding proteins. These results suggest that the interface-atom curvature-dependent formalism has a good prediction capability for protein-DNA interactions.

AVAILABILITY

The code and data sets are available for download on http://www.hy8.com/bioinformatics.htm

CONTACT

kenandzhou@hotmail.com.

摘要

动机

蛋白质与 DNA 的相互作用在许多生物过程中具有重要意义。然而,分子识别过程的基本原理在很大程度上仍然未知。随着越来越多的蛋白质-DNA 复合物的高分辨率 3D 结构可用,复合物的表面特征成为一个重要的研究课题。

结果

在我们的工作中,我们应用 alpha 形状模型来表示蛋白质-DNA 复合物的表面结构,并开发了一种基于界面原子曲率的条件概率判别函数,用于预测蛋白质-DNA 相互作用。基于原子曲率的形式比基于原子距离的方法更好地捕捉原子相互作用的细节。该方法在区分天然结构和对接诱饵集方面表现良好,在 z 分数方面优于基于距离的形式。计算机实验结果表明,具有最优参数的曲率相关形式可以在区分天然结构和最高表面互补得分诱饵集的天然 z 分数为-8.17,在区分天然结构和最低 RMSD 诱饵集的天然 z 分数为-7.38。界面原子曲率相关形式也可用于预测 DNA 结合蛋白的 apo 版本。这些结果表明,界面原子曲率相关形式对蛋白质-DNA 相互作用具有良好的预测能力。

可用性

代码和数据集可在 http://www.hy8.com/bioinformatics.htm 上下载。

联系信息

kenandzhou@hotmail.com

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验