Suppr超能文献

利用静电势的经验偏好和分子表面形状对蛋白质上的DNA结合位点进行基于结构的预测。

Structure-based prediction of DNA-binding sites on proteins using the empirical preference of electrostatic potential and the shape of molecular surfaces.

作者信息

Tsuchiya Yuko, Kinoshita Kengo, Nakamura Haruki

机构信息

Institute for Protein Research, Osaka University, Osaka, Japan.

出版信息

Proteins. 2004 Jun 1;55(4):885-94. doi: 10.1002/prot.20111.

Abstract

Protein-DNA interactions play an essential role in the genetic activities of life. Many structures of protein-DNA complexes are already known, but the common rules on how and where proteins bind to DNA have not emerged. Many attempts have been made to predict protein-DNA interactions using structural information, but the success rate is still about 80%. We analyzed 63 protein-DNA complexes by focusing our attention on the shape of the molecular surface of the protein and DNA, along with the electrostatic potential on the surface, and constructed a new statistical evaluation function to make predictions of DNA interaction sites on protein molecular surfaces. The shape of the molecular surface was described by a combination of local and global average curvature, which are intended to describe the small convex and concave and the large-scale concave curvatures of the protein surface preferentially appearing at DNA-binding sites. Using these structural features, along with the electrostatic potential obtained by solving the Poisson-Boltzmann equation numerically, we have developed prediction schemes with 86% and 96% accuracy for DNA-binding and non-DNA-binding proteins, respectively.

摘要

蛋白质与DNA的相互作用在生命的遗传活动中起着至关重要的作用。许多蛋白质-DNA复合物的结构已经为人所知,但蛋白质如何以及在何处与DNA结合的通用规则尚未显现。人们已经进行了许多尝试,利用结构信息来预测蛋白质与DNA的相互作用,但成功率仍约为80%。我们通过关注蛋白质和DNA分子表面的形状以及表面的静电势,分析了63个蛋白质-DNA复合物,并构建了一个新的统计评估函数,以预测蛋白质分子表面上的DNA相互作用位点。分子表面的形状通过局部和全局平均曲率的组合来描述,这些曲率旨在优先描述蛋白质表面在DNA结合位点处出现的小凸凹和大规模凹曲率。利用这些结构特征,以及通过数值求解泊松-玻尔兹曼方程获得的静电势,我们分别针对DNA结合蛋白和非DNA结合蛋白开发了准确率为86%和96%的预测方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验