Suppr超能文献

具有非椭圆轮廓状态密度的隐马尔可夫模型。

Hidden Markov models with nonelliptically contoured state densities.

机构信息

Intelligent Systems and Networks Group, Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2010 Dec;32(12):2297-304. doi: 10.1109/TPAMI.2010.153.

Abstract

Hidden Markov models (HMMs) are a popular approach for modeling sequential data comprising continuous attributes. In such applications, the observation emission densities of the HMM hidden states are typically modeled by means of elliptically contoured distributions, usually multivariate Gaussian or Student's-t densities. However, elliptically contoured distributions cannot sufficiently model heavy-tailed or skewed populations which are typical in many fields, such as the financial and the communication signal processing domain.Employing finite mixtures of such elliptically contoured distributions to model the HMM state densities is a common approach for the amelioration of these issues.Nevertheless, the nature of the modeled data often requires postulation of a large number of mixture components for each HMM state, which might have a negative effect on both model efficiency and the training data set's size required to avoid overfitting. To resolve these issues, in this paper, we advocate for the utilization ofa nonelliptically contoured distribution, the multivariate normal inverse Gaussian (MNIG) distribution, for modeling the observation densities of HMMs. As we experimentally demonstrate, our selection allows for more effective modeling of skewed and heavy-tailed populations in a simple and computationally efficient manner.

摘要

隐马尔可夫模型(HMM)是一种常用于建模连续属性的序列数据的方法。在这种应用中,HMM 隐藏状态的观测发射密度通常通过椭圆轮廓分布来建模,通常是多元高斯或学生 t 密度。然而,椭圆轮廓分布不能充分地建模具有重尾或偏态的分布,这种分布在许多领域中很常见,如金融和通信信号处理领域。

使用这些椭圆轮廓分布的有限混合来对 HMM 状态密度进行建模是改善这些问题的常见方法。然而,所建模数据的性质通常需要对每个 HMM 状态假设大量的混合分量,这可能会对模型效率和避免过拟合所需的训练数据集大小产生负面影响。为了解决这些问题,在本文中,我们提倡使用非椭圆轮廓分布,即多元正态逆高斯(MNIG)分布,来对 HMM 的观测密度进行建模。正如我们的实验所证明的,我们的选择允许以简单且计算有效的方式对偏态和重尾分布进行更有效的建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验