Krishnamoorthy A V, Marchand P J, Kiamilev F E, Esener S C
Appl Opt. 1992 Sep 10;31(26):5480-507. doi: 10.1364/AO.31.005480.
This paper investigates, at the system level, the performance-cost trade-off between optical and electronic interconnects in an optoelectronic interconnection network. The specific system considered is a packet-switched, free-space optoelectronic shuffle-exchange multistage interconnection network (MIN). System bandwidth is used as the performance measure, while system area, system power, and system volume constitute the cost measures. A detailed design and analysis of a two-dimensional (2-D) optoelectronic shuffle-exchange routing network with variable grain size K is presented. The architecture permits the conventional 2 x 2 switches or grains to be generalized to larger K x K grain sizes by replacing optical interconnects with electronic wires without affecting the functionality of the system. Thus the system consists of log(k) N optoelectronic stages interconnected with free-space K-shuffles. When K = N, the MIN consists of a single electronic stage with optical input-output. The system design use an effi ient 2-D VLSI layout and a single diffractive optical element between stages to provide the 2-D K-shuffle interconnection. Results indicate that there is an optimum range of grain sizes that provides the best performance per cost. For the specific VLSI/GaAs multiple quantum well technology and system architecture considered, grain sizes larger than 256 x 256 result in a reduced performance, while grain sizes smaller than 16 x 16 have a high cost. For a network with 4096 channels, the useful range of grain sizes corresponds to approximately 250-400 electronic transistors per optical input-output channel. The effect of varying certain technology parameters such as the number of hologram phase levels, the modulator driving voltage, the minimum detectable power, and VLSI minimum feature size on the optimum grain-size system is studied. For instance, results show that using four phase levels for the interconnection hologram is a good compromise for the cost functions mentioned above. As VLSI minimum feature sizes decrease, the optimum grain size increases, whereas, if optical interconnect performance in terms of the detector power or modulator driving voltage requirements improves, the optimum grain size may be reduced. Finally, several architectural modifications to the system, such as K x K contention-free switches and sorting networks, are investigated and optimized for grain size. Results indicate that system bandwidth can be increased, but at the price of reduced performance/cost. The optoelectronic MIN architectures considered thus provide a broad range of performance/cost alternatives and offer a superior performance over purely electronic MIN's.
本文在系统层面研究了光电互连网络中光学互连和电子互连之间的性能-成本权衡。所考虑的具体系统是一个分组交换的自由空间光电混洗交换多级互连网络(MIN)。系统带宽用作性能指标,而系统面积、系统功耗和系统体积构成成本指标。本文给出了一种具有可变粒度K的二维(2-D)光电混洗交换路由网络的详细设计与分析。该架构允许通过用电子线路替换光学互连,将传统的2×2开关或粒度推广到更大的K×K粒度,而不影响系统的功能。因此,该系统由log(k) N个光电级组成,通过自由空间K混洗互连。当K = N时,MIN由一个具有光学输入输出的单个电子级组成。系统设计采用高效的二维超大规模集成电路布局和级间的单个衍射光学元件来提供二维K混洗互连。结果表明,存在一个能提供最佳性价比的最佳粒度范围。对于所考虑的特定超大规模集成电路/砷化镓多量子阱技术和系统架构,大于256×256的粒度会导致性能下降,而小于16×16的粒度成本较高。对于一个具有4096个通道的网络,有用的粒度范围对应于每个光学输入输出通道约250 - 400个电子晶体管。研究了改变某些技术参数(如全息图相位级数、调制器驱动电压、最小可检测功率和超大规模集成电路最小特征尺寸)对最佳粒度系统的影响。例如,结果表明,对于上述成本函数,使用四个相位级的互连全息图是一个很好的折衷方案。随着超大规模集成电路最小特征尺寸减小,最佳粒度增大,而如果光学互连在探测器功率或调制器驱动电压要求方面的性能提高,最佳粒度可能会减小。最后,对系统进行了一些架构修改,如K×K无竞争开关和排序网络,并针对粒度进行了优化。结果表明,系统带宽可以增加,但代价是性能/成本降低。因此,所考虑的光电MIN架构提供了广泛的性能/成本选择,并比纯电子MIN具有更高的性能。