Liu Dong, Croteau Deborah L, Souza-Pinto Nadja, Pitta Michael, Tian Jingyan, Wu Christopher, Jiang Haiyang, Mustafa Khadija, Keijzers Guido, Bohr Vilhelm A, Mattson Mark P
Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224, USA.
J Cereb Blood Flow Metab. 2011 Feb;31(2):680-92. doi: 10.1038/jcbfm.2010.147. Epub 2010 Aug 25.
7,8-Dihydro-8-oxoguanine DNA glycosylase (OGG1) is a major DNA glycosylase involved in base-excision repair (BER) of oxidative DNA damage to nuclear and mitochondrial DNA (mtDNA). We used OGG1-deficient (OGG1(-/-)) mice to examine the possible roles of OGG1 in the vulnerability of neurons to ischemic and oxidative stress. After exposure of cultured neurons to oxidative and metabolic stress levels of OGG1 in the nucleus were elevated and mitochondria exhibited fragmentation and increased levels of the mitochondrial fission protein dynamin-related protein 1 (Drp1) and reduced membrane potential. Cortical neurons isolated from OGG1(-/-) mice were more vulnerable to oxidative insults than were OGG1(+/+) neurons, and OGG1(-/-) mice developed larger cortical infarcts and behavioral deficits after permanent middle cerebral artery occlusion compared with OGG1(+/+) mice. Accumulations of oxidative DNA base lesions (8-oxoG, FapyAde, and FapyGua) were elevated in response to ischemia in both the ipsilateral and contralateral hemispheres, and to a greater extent in the contralateral cortex of OGG1(-/-) mice compared with OGG1(+/+) mice. Ischemia-induced elevation of 8-oxoG incision activity involved increased levels of a nuclear isoform OGG1, suggesting an adaptive response to oxidative nuclear DNA damage. Thus, OGG1 has a pivotal role in repairing oxidative damage to nuclear DNA under ischemic conditions, thereby reducing brain damage and improving functional outcome.
7,8 - 二氢 - 8 - 氧代鸟嘌呤DNA糖基化酶(OGG1)是一种主要的DNA糖基化酶,参与对核DNA和线粒体DNA(mtDNA)氧化损伤的碱基切除修复(BER)。我们使用OGG1缺陷(OGG1(-/-))小鼠来研究OGG1在神经元对缺血和氧化应激易感性中的可能作用。将培养的神经元暴露于氧化和代谢应激后,细胞核中OGG1的水平升高,线粒体呈现碎片化,线粒体分裂蛋白动力相关蛋白1(Drp1)水平增加,膜电位降低。与OGG1(+/+)神经元相比,从OGG1(-/-)小鼠分离的皮质神经元对氧化损伤更敏感,并且与OGG1(+/+)小鼠相比,OGG1(-/-)小鼠在永久性大脑中动脉闭塞后出现更大的皮质梗死和行为缺陷。在同侧和对侧半球,氧化DNA碱基损伤(8 - 氧代鸟嘌呤、FapyAde和FapyGua)的积累因缺血而升高,与OGG1(+/+)小鼠相比,OGG1(-/-)小鼠对侧皮质中的积累程度更大。缺血诱导的8 - 氧代鸟嘌呤切割活性升高涉及一种核异构体OGG1水平增加,表明对氧化核DNA损伤的适应性反应。因此,OGG1在缺血条件下修复核DNA的氧化损伤中起关键作用,从而减少脑损伤并改善功能结局。