Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
Occup Environ Med. 2011 Jan;68(1):4-9. doi: 10.1136/oem.2009.048132. Epub 2010 Aug 25.
There is great interest in evaluating gene-environment interactions with chemical exposures, but exposure assessment poses a unique challenge in case-control studies. Expert assessment of detailed work history data is usually considered the best approach, but it is a laborious and time-consuming process. We set out to determine if a less intensive method of exposure assessment (a job exposure matrix (JEM)) would produce similar results to a previous analysis that found evidence of effect modification of the association between expert-assessed lead exposure and risk of brain tumours by a single nucleotide polymorphism in the ALAD gene (rs1800435).
We used data from a study of 355 patients with glioma, 151 patients with meningioma and 505 controls. Logistic regression models were used to examine associations between brain tumour risk and lead exposure and effect modification by genotype. We evaluated Cohen's κ, sensitivity and specificity for the JEM compared to the expert-assessed exposure metrics.
Although effect estimates were imprecise and driven by a small number of cases, we found evidence of effect modification between lead exposure and ALAD genotype when using expert- but not JEM-derived lead exposure estimates. κ Values indicated only modest agreement (<0.5) for the exposure metrics, with the JEM indicating high specificity (∼0.9) but poor sensitivity (∼0.5). Disagreement between the two methods was generally due to having additional information in the detailed work history.
These results provide preliminary evidence suggesting that high quality exposure data are likely to improve the ability to detect genetic effect modification.
评估基因-环境相互作用与化学暴露的关系具有重要意义,但暴露评估在病例对照研究中提出了独特的挑战。专家对详细工作史数据的评估通常被认为是最佳方法,但这是一项费力且耗时的过程。我们着手确定一种不那么密集的暴露评估方法(职业暴露矩阵(JEM))是否会产生与先前分析相似的结果,该分析发现专家评估的铅暴露与 ALAD 基因(rs1800435)单核苷酸多态性之间的关联的风险的效应修饰作用。
我们使用了一项研究中的数据,该研究涉及 355 名胶质瘤患者、151 名脑膜瘤患者和 505 名对照者。使用逻辑回归模型检验脑肿瘤风险与铅暴露之间的关联以及基因型的效应修饰作用。我们评估了 JEM 与专家评估的暴露指标相比的 Cohen's κ、敏感性和特异性。
尽管效应估计值不精确,并且受到少数病例的驱动,但当使用专家评估而不是 JEM 衍生的铅暴露估计值时,我们发现铅暴露与 ALAD 基因型之间存在效应修饰的证据。κ 值表明暴露指标的一致性仅为中等(<0.5),JEM 表明高度特异性(约 0.9)但敏感性差(约 0.5)。两种方法之间的差异通常是由于详细工作史中有更多信息。
这些结果提供了初步证据,表明高质量的暴露数据可能会提高检测遗传效应修饰的能力。