Center for Structural Biology, Wake Forest University School of Medicine,Winston-Salem, North Carolina 27157, USA.
Biochemistry. 2010 Sep 28;49(38):8398-414. doi: 10.1021/bi100698n.
Bacillithiol (Cys-GlcN-malate, BSH) has recently been identified as a novel low-molecular weight thiol in Bacillus anthracis, Staphylococcus aureus, and several other Gram-positive bacteria lacking glutathione and mycothiol. We have now characterized the first two enzymes for the BSH biosynthetic pathway in B. anthracis, which combine to produce α-d-glucosaminyl l-malate (GlcN-malate) from UDP-GlcNAc and l-malate. The structure of the GlcNAc-malate intermediate has been determined, as have the kinetic parameters for the BaBshA glycosyltransferase (→GlcNAc-malate) and the BaBshB deacetylase (→GlcN-malate). BSH is one of only two natural products reported to contain a malyl glycoside, and the crystal structure of the BaBshA-UDP-malate ternary complex, determined in this work at 3.3 Å resolution, identifies several active-site interactions important for the specific recognition of l-malate, but not other α-hydroxy acids, as the acceptor substrate. In sharp contrast to the structures reported for the GlcNAc-1-d-myo-inositol-3-phosphate synthase (MshA) apo and ternary complex forms, there is no major conformational change observed in the structures of the corresponding BaBshA forms. A mutant strain of B. anthracis deficient in the BshA glycosyltransferase fails to produce BSH, as predicted. This B. anthracis bshA locus (BA1558) has been identified in a transposon-site hybridization study as required for growth, sporulation, or germination [Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301], suggesting that the biosynthesis of BSH could represent a target for the development of novel antimicrobials with broad-spectrum activity against Gram-positive pathogens like B. anthracis. The metabolites that function in thiol redox buffering and homeostasis in Bacillus are not well understood, and we present a composite picture based on this and other recent work.
芽孢硫醇(Cys-GlcN-马来酸酯,BSH)最近被鉴定为炭疽芽孢杆菌、金黄色葡萄球菌和其他几种缺乏谷胱甘肽和麦硫醇的革兰氏阳性菌中的一种新型低分子量硫醇。我们现在已经描述了炭疽芽孢杆菌中 BSH 生物合成途径的前两种酶,它们共同作用将 UDP-GlcNAc 和马来酸转化为α-d-氨基葡萄糖基 l-马来酸(GlcN-马来酸)。已经确定了 GlcN-马来酸中间体的结构,以及 BaBshA 糖基转移酶(→GlcN-马来酸)和 BaBshB 脱乙酰酶(→GlcN-马来酸)的动力学参数。BSH 是仅有的两种被报道含有马来酰基糖苷的天然产物之一,本工作中确定的 BaBshA-UDP-马来酸三元复合物的晶体结构,在 3.3 Å 分辨率下,确定了几个重要的活性位点相互作用,这些相互作用有利于对 l-马来酸的特异性识别,但不能识别其他α-羟基酸作为受体底物。与报道的 GlcNAc-1-d-肌醇-3-磷酸合酶(MshA)apo 和三元复合物形式的结构形成鲜明对比的是,在相应的 BaBshA 形式的结构中没有观察到主要的构象变化。一株缺乏 BshA 糖基转移酶的炭疽芽孢杆菌突变体未能如预测的那样产生 BSH。这种炭疽芽孢杆菌 bshA 基因座(BA1558)在转座子位点杂交研究中被鉴定为生长、孢子形成或发芽所必需[Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301],这表明 BSH 的生物合成可能成为开发针对炭疽芽孢杆菌等革兰氏阳性病原体具有广谱活性的新型抗菌药物的目标。芽孢杆菌中参与硫醇氧化还原缓冲和平衡的代谢物尚未得到很好的理解,我们根据这一研究和其他最近的工作呈现了一个综合的图片。