Suppr超能文献

炭疽杆菌中 N-乙酰-α-D-氨基葡萄糖基-l-苹果酸合酶和去乙酰化酶功能的表征及其在芽孢硫醇生物合成中的作用。

Characterization of the N-acetyl-α-D-glucosaminyl l-malate synthase and deacetylase functions for bacillithiol biosynthesis in Bacillus anthracis .

机构信息

Center for Structural Biology, Wake Forest University School of Medicine,Winston-Salem, North Carolina 27157, USA.

出版信息

Biochemistry. 2010 Sep 28;49(38):8398-414. doi: 10.1021/bi100698n.

Abstract

Bacillithiol (Cys-GlcN-malate, BSH) has recently been identified as a novel low-molecular weight thiol in Bacillus anthracis, Staphylococcus aureus, and several other Gram-positive bacteria lacking glutathione and mycothiol. We have now characterized the first two enzymes for the BSH biosynthetic pathway in B. anthracis, which combine to produce α-d-glucosaminyl l-malate (GlcN-malate) from UDP-GlcNAc and l-malate. The structure of the GlcNAc-malate intermediate has been determined, as have the kinetic parameters for the BaBshA glycosyltransferase (→GlcNAc-malate) and the BaBshB deacetylase (→GlcN-malate). BSH is one of only two natural products reported to contain a malyl glycoside, and the crystal structure of the BaBshA-UDP-malate ternary complex, determined in this work at 3.3 Å resolution, identifies several active-site interactions important for the specific recognition of l-malate, but not other α-hydroxy acids, as the acceptor substrate. In sharp contrast to the structures reported for the GlcNAc-1-d-myo-inositol-3-phosphate synthase (MshA) apo and ternary complex forms, there is no major conformational change observed in the structures of the corresponding BaBshA forms. A mutant strain of B. anthracis deficient in the BshA glycosyltransferase fails to produce BSH, as predicted. This B. anthracis bshA locus (BA1558) has been identified in a transposon-site hybridization study as required for growth, sporulation, or germination [Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301], suggesting that the biosynthesis of BSH could represent a target for the development of novel antimicrobials with broad-spectrum activity against Gram-positive pathogens like B. anthracis. The metabolites that function in thiol redox buffering and homeostasis in Bacillus are not well understood, and we present a composite picture based on this and other recent work.

摘要

芽孢硫醇(Cys-GlcN-马来酸酯,BSH)最近被鉴定为炭疽芽孢杆菌、金黄色葡萄球菌和其他几种缺乏谷胱甘肽和麦硫醇的革兰氏阳性菌中的一种新型低分子量硫醇。我们现在已经描述了炭疽芽孢杆菌中 BSH 生物合成途径的前两种酶,它们共同作用将 UDP-GlcNAc 和马来酸转化为α-d-氨基葡萄糖基 l-马来酸(GlcN-马来酸)。已经确定了 GlcN-马来酸中间体的结构,以及 BaBshA 糖基转移酶(→GlcN-马来酸)和 BaBshB 脱乙酰酶(→GlcN-马来酸)的动力学参数。BSH 是仅有的两种被报道含有马来酰基糖苷的天然产物之一,本工作中确定的 BaBshA-UDP-马来酸三元复合物的晶体结构,在 3.3 Å 分辨率下,确定了几个重要的活性位点相互作用,这些相互作用有利于对 l-马来酸的特异性识别,但不能识别其他α-羟基酸作为受体底物。与报道的 GlcNAc-1-d-肌醇-3-磷酸合酶(MshA)apo 和三元复合物形式的结构形成鲜明对比的是,在相应的 BaBshA 形式的结构中没有观察到主要的构象变化。一株缺乏 BshA 糖基转移酶的炭疽芽孢杆菌突变体未能如预测的那样产生 BSH。这种炭疽芽孢杆菌 bshA 基因座(BA1558)在转座子位点杂交研究中被鉴定为生长、孢子形成或发芽所必需[Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301],这表明 BSH 的生物合成可能成为开发针对炭疽芽孢杆菌等革兰氏阳性病原体具有广谱活性的新型抗菌药物的目标。芽孢杆菌中参与硫醇氧化还原缓冲和平衡的代谢物尚未得到很好的理解,我们根据这一研究和其他最近的工作呈现了一个综合的图片。

相似文献

2
Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli.
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6482-6. doi: 10.1073/pnas.1000928107. Epub 2010 Mar 22.
3
Characterization of BshA, bacillithiol glycosyltransferase from Staphylococcus aureus and Bacillus subtilis.
FEBS Lett. 2012 Apr 5;586(7):1004-8. doi: 10.1016/j.febslet.2012.02.028. Epub 2012 Mar 6.
5
Bacillithiol, a new player in bacterial redox homeostasis.
Antioxid Redox Signal. 2011 Jul 1;15(1):123-33. doi: 10.1089/ars.2010.3562. Epub 2010 Dec 17.
6
Detoxification of toxins by bacillithiol in Staphylococcus aureus.
Microbiology (Reading). 2012 Apr;158(Pt 4):1117-1126. doi: 10.1099/mic.0.055715-0. Epub 2012 Jan 19.
7
Analysis of mutants disrupted in bacillithiol metabolism in Staphylococcus aureus.
Biochem Biophys Res Commun. 2013 Jun 28;436(2):128-33. doi: 10.1016/j.bbrc.2013.04.027. Epub 2013 Apr 22.
9
The Role of Bacillithiol in Gram-Positive Firmicutes.
Antioxid Redox Signal. 2018 Feb 20;28(6):445-462. doi: 10.1089/ars.2017.7057. Epub 2017 Apr 24.
10
A Structural, Functional, and Computational Analysis of BshA, the First Enzyme in the Bacillithiol Biosynthesis Pathway.
Biochemistry. 2016 Aug 23;55(33):4654-65. doi: 10.1021/acs.biochem.6b00472. Epub 2016 Aug 11.

引用本文的文献

1
Sulfinamide Formation from the Reaction of Bacillithiol and Nitroxyl.
ACS Chem Biol. 2023 Dec 15;18(12):2524-2534. doi: 10.1021/acschembio.3c00526. Epub 2023 Nov 27.
2
Structural Characterization and Ligand-Induced Conformational Changes of SenB, a Se-Glycosyltransferase Involved in Selenoneine Biosynthesis.
Biochemistry. 2023 Dec 5;62(23):3337-3342. doi: 10.1021/acs.biochem.3c00452. Epub 2023 Nov 15.
5
Redox and Thiols in Archaea.
Antioxidants (Basel). 2020 May 5;9(5):381. doi: 10.3390/antiox9050381.
6
Structure of the Mycobacterium smegmatis α-maltose-1-phosphate synthase GlgM.
Acta Crystallogr F Struct Biol Commun. 2020 Apr 1;76(Pt 4):175-181. doi: 10.1107/S2053230X20004343. Epub 2020 Apr 3.
7
Group A, B, C, and G Lancefield antigen biosynthesis is initiated by a conserved α-d-GlcNAc-β-1,4-l-rhamnosyltransferase.
J Biol Chem. 2019 Oct 18;294(42):15237-15256. doi: 10.1074/jbc.RA119.009894. Epub 2019 Sep 10.
9
Structure and mechanism of cancer-associated N-acetylglucosaminyltransferase-V.
Nat Commun. 2018 Aug 23;9(1):3380. doi: 10.1038/s41467-018-05931-w.
10
Uncovering Large-Scale Conformational Change in Molecular Dynamics without Prior Knowledge.
J Chem Theory Comput. 2016 Dec 13;12(12):6130-6146. doi: 10.1021/acs.jctc.6b00757. Epub 2016 Nov 10.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
4
Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli.
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6482-6. doi: 10.1073/pnas.1000928107. Epub 2010 Mar 22.
5
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
8
Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis.
J Biol Chem. 2010 Jan 15;285(3):1587-96. doi: 10.1074/jbc.M109.061747. Epub 2009 Nov 16.
9
Diamide triggers mainly S Thiolations in the cytoplasmic proteomes of Bacillus subtilis and Staphylococcus aureus.
J Bacteriol. 2009 Dec;191(24):7520-30. doi: 10.1128/JB.00937-09. Epub 2009 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验