Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W3R4, Canada.
Math Biosci. 2010 Nov;228(1):71-7. doi: 10.1016/j.mbs.2010.08.008. Epub 2010 Aug 27.
A general mathematical model is proposed to study the impact of group mixing in a heterogeneous host population on the spread of a disease that confers temporary immunity upon recovery. The model contains general distribution functions that account for the probabilities that individuals remain in the recovered class after recovery. For this model, the basic reproduction number R₀ is identified. It is shown that if R₀ < 1, then the disease dies out in the sense that the disease free equilibrium is globally asymptotically stable; whereas if R₀ > 1, this equilibrium becomes unstable. In this latter case, depending on the distribution functions and the group mixing strengths, the disease either persists at a constant endemic level or exhibits sustained oscillatory behavior.
提出了一个通用的数学模型来研究在异质宿主群体中群体混合对具有临时免疫的疾病传播的影响。该模型包含通用的分布函数,用于描述个体在康复后仍处于康复类别的概率。对于这个模型,确定了基本再生数 R₀。结果表明,如果 R₀ < 1,则疾病会在某种意义上消失,即无病平衡点全局渐近稳定;而如果 R₀ > 1,则这个平衡点变得不稳定。在后一种情况下,取决于分布函数和群体混合强度,疾病要么以恒定的地方性水平持续存在,要么表现出持续的振荡行为。