Suppr超能文献

有丝分裂时 Cdc25B 丝氨酸 321 的磷酸化破坏了 14-3-3 与高亲和力丝氨酸 323 位点的结合。

Mitotic phosphorylation of Cdc25B Ser321 disrupts 14-3-3 binding to the high affinity Ser323 site.

机构信息

University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia.

出版信息

J Biol Chem. 2010 Nov 5;285(45):34364-70. doi: 10.1074/jbc.M110.138412. Epub 2010 Aug 27.

Abstract

Cdc25B is a key regulator of entry into mitosis, and its activity and localization are regulated by binding of the 14-3-3 dimer. There are three 14-3-3 binding sites on Cdc25B, with Ser(323) being the highest affinity binding and is highly homologous to the Ser(216) 14-3-3 binding site on Cdc25C. Loss of 14-3-3 binding to Ser(323) increases cyclin/Cdk substrate access to the catalytic site, thereby increasing its activity. It also affects the localization of Cdc25B. Thus, phosphorylation and 14-3-3 binding to this site is essential for down-regulating Cdc25B activity, blocking its mitosis promoting function. The question of how this inhibitory signal is relieved to allow Cdc25B activation and entry into mitosis is yet to be resolved. Here, we show that Ser(323) phosphorylation is maintained into mitosis, but phosphorylation of Ser(321) disrupts 14-3-3 binding to Ser(323), mimicking the effect of inhibiting Ser(323) phosphorylation on both Cdc25B activity and localization. The unphosphorylated Ser(321) appears to have a role in stabilizing 14-3-3 binding to Ser(323), and loss of the Ser hydroxyl group appears to be sufficient to significantly reduce 14-3-3 binding. A consequence of loss of 14-3-3 binding is dephosphorylation of Ser(323). Ser(321) is phosphorylated in mitosis by Cdk1. The mitotic phosphorylation of Ser(321) acts to maintain full activation of Cdc25B by disrupting 14-3-3 binding to Ser(323) and enhancing the dephosphorylation of Ser(323) to block 14-3-3 binding to this site.

摘要

Cdc25B 是细胞进入有丝分裂的关键调节因子,其活性和定位受 14-3-3 二聚体结合的调节。Cdc25B 上有三个 14-3-3 结合位点,Ser(323)的结合亲和力最高,与 Cdc25C 的 Ser(216) 14-3-3 结合位点高度同源。Ser(323)与 14-3-3 结合的丧失增加了 cyclin/Cdk 底物进入催化位点的机会,从而提高了其活性。它还影响 Cdc25B 的定位。因此,磷酸化和 14-3-3 与该位点的结合对于下调 Cdc25B 的活性、阻断其促进有丝分裂的功能是必不可少的。如何解除这种抑制信号以允许 Cdc25B 激活并进入有丝分裂的问题尚未解决。在这里,我们表明 Ser(323)的磷酸化在有丝分裂中得以维持,但 Ser(321)的磷酸化破坏了 14-3-3 与 Ser(323)的结合,模拟了抑制 Ser(323)磷酸化对 Cdc25B 活性和定位的影响。未磷酸化的 Ser(321)似乎在稳定 14-3-3 与 Ser(323)的结合中起作用,并且 Ser 羟基的丢失似乎足以显著降低 14-3-3 的结合。14-3-3 结合丢失的结果是 Ser(323)去磷酸化。Ser(321)在有丝分裂中被 Cdk1 磷酸化。Ser(321)的有丝分裂磷酸化通过破坏 14-3-3 与 Ser(323)的结合并增强 Ser(323)的去磷酸化来阻止 14-3-3 与该位点结合,从而保持 Cdc25B 的完全激活。

相似文献

1
Mitotic phosphorylation of Cdc25B Ser321 disrupts 14-3-3 binding to the high affinity Ser323 site.
J Biol Chem. 2010 Nov 5;285(45):34364-70. doi: 10.1074/jbc.M110.138412. Epub 2010 Aug 27.
2
Phosphorylation of Cdc25B3 Ser169 regulates 14-3-3 binding to Ser151 and Cdc25B activity.
Cell Cycle. 2011 Jun 15;10(12):1960-7. doi: 10.4161/cc.10.12.15819.
3
Dual phosphorylation controls Cdc25 phosphatases and mitotic entry.
Nat Cell Biol. 2003 Jun;5(6):545-51. doi: 10.1038/ncb994.
4
Cdc25B activity is regulated by 14-3-3.
Oncogene. 2001 Jul 19;20(32):4393-401. doi: 10.1038/sj.onc.1204574.
5
Protein kinase A regulates resumption of meiosis by phosphorylation of Cdc25B in mammalian oocytes.
Cell Cycle. 2009 Feb 15;8(4):665-70. doi: 10.4161/cc.8.4.7846. Epub 2009 Feb 14.
6
14-3-3 acts as an intramolecular bridge to regulate cdc25B localization and activity.
J Biol Chem. 2003 Aug 1;278(31):28580-7. doi: 10.1074/jbc.M304027200. Epub 2003 May 22.
7
Study of the docking-dependent PLK1 phosphorylation of the CDC25B phosphatase.
Biochem Biophys Res Commun. 2011 Jun 24;410(1):87-90. doi: 10.1016/j.bbrc.2011.05.110. Epub 2011 May 27.
9
CHK1 phosphorylates CDC25B during the cell cycle in the absence of DNA damage.
J Cell Sci. 2006 Oct 15;119(Pt 20):4269-75. doi: 10.1242/jcs.03200. Epub 2006 Sep 26.
10
Nuclear localization of CDC25B1 and serine 146 integrity are required for induction of mitosis.
J Biol Chem. 2002 Sep 20;277(38):35176-82. doi: 10.1074/jbc.M204430200. Epub 2002 Jul 9.

引用本文的文献

2
Principal Postulates of Centrosomal Biology. Version 2020.
Cells. 2020 Sep 24;9(10):2156. doi: 10.3390/cells9102156.
3
Oxidative stress-induced DNA damage of mouse zygotes triggers G2/M checkpoint and phosphorylates Cdc25 and Cdc2.
Cell Stress Chaperones. 2016 Jul;21(4):687-96. doi: 10.1007/s12192-016-0693-5. Epub 2016 Apr 26.
5
Cyclin A/Cdk2 regulates Cdh1 and claspin during late S/G2 phase of the cell cycle.
Cell Cycle. 2014;13(20):3302-11. doi: 10.4161/15384101.2014.949111.
6
14-3-3 epsilon prevents G2/M transition of fertilized mouse eggs by binding with CDC25B.
BMC Dev Biol. 2014 Jul 25;14:33. doi: 10.1186/s12861-014-0033-x.
7
Cyclic nucleotide dependent dephosphorylation of regulator of G-protein signaling 18 in human platelets.
PLoS One. 2013 Nov 7;8(11):e80251. doi: 10.1371/journal.pone.0080251. eCollection 2013.
9
Phospho-Ser/Thr-binding domains: navigating the cell cycle and DNA damage response.
Nat Rev Mol Cell Biol. 2013 Sep;14(9):563-80. doi: 10.1038/nrm3640.

本文引用的文献

1
MAPK pathway activation delays G2/M progression by destabilizing Cdc25B.
J Biol Chem. 2009 Dec 4;284(49):33781-8. doi: 10.1074/jbc.M109.027516. Epub 2009 Oct 1.
3
Cyclin A/cdk2 coordinates centrosomal and nuclear mitotic events.
Oncogene. 2008 Jul 17;27(31):4261-8. doi: 10.1038/onc.2008.74. Epub 2008 Mar 31.
5
CDC25 phosphatases in cancer cells: key players? Good targets?
Nat Rev Cancer. 2007 Jul;7(7):495-507. doi: 10.1038/nrc2169.
6
CHK1 phosphorylates CDC25B during the cell cycle in the absence of DNA damage.
J Cell Sci. 2006 Oct 15;119(Pt 20):4269-75. doi: 10.1242/jcs.03200. Epub 2006 Sep 26.
7
Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1.
Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10660-5. doi: 10.1073/pnas.0600447103. Epub 2006 Jul 3.
8
Genotoxic-activated G2-M checkpoint exit is dependent on CDC25B phosphatase expression.
Mol Cancer Ther. 2006 Jun;5(6):1446-51. doi: 10.1158/1535-7163.MCT-06-0099.
10
A role for PP1 in the Cdc2/Cyclin B-mediated positive feedback activation of Cdc25.
Mol Biol Cell. 2006 Apr;17(4):1779-89. doi: 10.1091/mbc.e05-08-0751. Epub 2006 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验