Suppr超能文献

水位对水生植物雌蕊颜色多态性的波动选择。

Fluctuating selection by water level on gynoecium colour polymorphism in an aquatic plant.

机构信息

College of Life Sciences, Wuhan University, Wuhan 430072, China.

出版信息

Ann Bot. 2010 Nov;106(5):843-8. doi: 10.1093/aob/mcq172. Epub 2010 Aug 27.

Abstract

BACKGROUND AND AIMS

It has been proposed that variation in pollinator preferences or a fluctuating environment can act to maintain flower colour polymorphism. These two hypotheses were tested in an aquatic monocot Butomus umbellatus (Butomaceae) with a pink or white gynoecium in the field population.

METHODS

Pollinator visitation was compared in experimental arrays of equivalent flowering cymes from both colour morphs. Seed set was compared between inter- and intramorph pollination under different water levels to test the effect of fluctuating environment on seed fertility.

KEY RESULTS

Overall, the major pollinator groups did not discriminate between colour morphs. Compared with the white morph, seed production in the pink morph under intermorph, intramorph and open pollination treatments was significantly higher when the water level was low but not when it was high. Precipitation in July was correlated with yearly seed production in the pink morph but not in the white morph.

CONCLUSIONS

The results indicated that the two colour morphs differed in their tolerance to water level. Our study on this aquatic plant provides additional evidence to support the hypothesis that flower colour polymorphism can be preserved by environmental heterogeneity.

摘要

背景与目的

有人提出,传粉者偏好的变化或波动的环境可以维持花的颜色多态性。这两个假说在水生单子叶植物 Butomus umbellatus(花蔺科)的野外种群中进行了测试,该植物的雌蕊有粉红色或白色。

方法

在来自两种颜色形态的相同开花总状花序的实验排列中比较传粉者的访问。在不同水位下比较种间和种内授粉之间的种子结实率,以检验环境波动对种子育性的影响。

主要结果

总体而言,主要的传粉者群体没有区分颜色形态。与白色形态相比,当水位较低时,粉红色形态的种子产量在种间、种内和开放授粉处理下显著高于水位较高时的种子产量。7 月的降水量与粉红色形态的年种子产量相关,但与白色形态无关。

结论

结果表明,这两种颜色形态在对水位的耐受性上存在差异。我们对这种水生植物的研究提供了额外的证据,支持花的颜色多态性可以通过环境异质性来维持的假说。

相似文献

1
Fluctuating selection by water level on gynoecium colour polymorphism in an aquatic plant.
Ann Bot. 2010 Nov;106(5):843-8. doi: 10.1093/aob/mcq172. Epub 2010 Aug 27.
2
Discovery of gynoecium color polymorphism in an aquatic plant.
J Integr Plant Biol. 2008 Sep;50(9):1178-82. doi: 10.1111/j.1744-7909.2008.00720.x.
3
The effects of pollination, herbivory and autonomous selfing on the maintenance of flower colour variation in Silenelittorea.
Plant Biol (Stuttg). 2021 Mar;23(2):275-284. doi: 10.1111/plb.13209. Epub 2020 Dec 14.
4
Inheritance and reproductive consequences of floral anthocyanin deficiency in Silene dioica (Caryophyllaceae).
Am J Bot. 2014 Aug;101(8):1388-92. doi: 10.3732/ajb.1400136. Epub 2014 Aug 15.
7
Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators.
Ann Bot. 2016 Aug;118(2):249-57. doi: 10.1093/aob/mcw103. Epub 2016 Jun 20.
8
Colour preferences of Tetragonula carbonaria Sm. stingless bees for colour morphs of the Australian native orchid Caladenia carnea.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2019 Jun;205(3):347-361. doi: 10.1007/s00359-019-01346-0. Epub 2019 May 29.
10
Breeding systems of floral colour forms in the Drosera cistiflora species complex.
Plant Biol (Stuttg). 2020 Nov;22(6):992-1001. doi: 10.1111/plb.13159. Epub 2020 Aug 26.

引用本文的文献

1
Maintenance of flower color dimorphism in (Rubiaceae): responses to fluctuating temperatures in a dolomite Karst region.
Front Plant Sci. 2024 Dec 18;15:1495112. doi: 10.3389/fpls.2024.1495112. eCollection 2024.
2
Abiotic Environment Predicts Micro- but Not Macroevolutionary Patterns of Flower Color in Monkeyflowers (Phrymaceae).
Front Plant Sci. 2021 Mar 25;12:636133. doi: 10.3389/fpls.2021.636133. eCollection 2021.
3
Light induces petal color change in (Combretaceae).
Plant Divers. 2017 Nov 24;40(1):28-34. doi: 10.1016/j.pld.2017.11.004. eCollection 2018 Feb.

本文引用的文献

1
Why are all colour combinations not equally represented as flower-colour polymorphisms?
New Phytol. 2001 Jul;151(1):237-241. doi: 10.1046/j.1469-8137.2001.00159.x.
2
PLEIOTROPIC EFFECTS OF FLOWER-COLOR INTENSITY ON HERBIVORE PERFORMANCE ON IPOMOEA PURPUREA.
Evolution. 1996 Apr;50(2):957-963. doi: 10.1111/j.1558-5646.1996.tb03908.x.
3
NATURAL SELECTION AGAINST WHITE PETALS IN PHLOX.
Evolution. 1995 Oct;49(5):1017-1022. doi: 10.1111/j.1558-5646.1995.tb02336.x.
4
POLLINATOR CHOICE AND STABILIZING SELECTION FOR FLOWER COLOR IN DELPHINIUM NELSONII.
Evolution. 1981 Mar;35(2):376-390. doi: 10.1111/j.1558-5646.1981.tb04896.x.
5
HAWKMOTHS AND THE GEOGRAPHIC PATTERNS OF FLORAL VARIATION IN AQUILEGIA CAERULEA.
Evolution. 1981 Jul;35(4):763-774. doi: 10.1111/j.1558-5646.1981.tb04936.x.
9
Discovery of gynoecium color polymorphism in an aquatic plant.
J Integr Plant Biol. 2008 Sep;50(9):1178-82. doi: 10.1111/j.1744-7909.2008.00720.x.
10
Pleiotropic effects of an allele producing white flowers in Ipomoea purpurea.
Evolution. 2008 May;62(5):1076-85. doi: 10.1111/j.1558-5646.2008.00355.x. Epub 2008 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验