Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
J Am Chem Soc. 2010 Sep 29;132(38):13425-33. doi: 10.1021/ja105041j.
Human thymidine phosphorylase (hTP) is responsible for thymidine (dT) homeostasis, and its action promotes angiogenesis. In the absence of phosphate, hTP catalyzes a slow hydrolytic depyrimidination of dT yielding thymine and 2-deoxyribose (dRib). Its transition state was characterized using multiple kinetic isotope effect (KIE) measurements. Isotopically enriched thymidines were synthesized enzymatically from glucose or (deoxy)ribose, and intrinsic KIEs were used to interpret the transition state structure. KIEs from [1'-(14)C]-, [1-(15)N]-, [1'-(3)H]-, [2'R-(3)H]-, [2'S-(3)H]-, [4'-(3)H]-, and [5'-(3)H]dTs provided values of 1.033 ± 0.002, 1.004 ± 0.002, 1.325 ± 0.003, 1.101 ± 0.004, 1.087 ± 0.005, 1.040 ± 0.003, and 1.033 ± 0.003, respectively. Transition state analysis revealed a stepwise mechanism with a 2-deoxyribocation formed early and a higher energetic barrier for nucleophilic attack of a water molecule on the high energy intermediate. An equilibrium exists between the deoxyribocation and reactants prior to the irreversible nucleophilic attack by water. The results establish activation of the thymine leaving group without requirement for phosphate. A transition state constrained to match the intrinsic KIEs was found using density functional theory. An active site histidine (His116) is implicated as the catalytic base for activation of the water nucleophile at the rate-limiting transition state. The distance between the water nucleophile and the anomeric carbon (r(C-O)) is predicted to be 2.3 A at the transition state. The transition state model predicts that deoxyribose adopts a mild 3'-endo conformation during nucleophilic capture. These results differ from the concerted bimolecular mechanism reported for the arsenolytic reaction (Birck, M. R.; Schramm, V. L. J. Am. Chem. Soc. 2004, 126, 2447-2453).
人胸腺嘧啶磷酸化酶 (hTP) 负责胸苷 (dT) 的动态平衡,其作用促进血管生成。在没有磷酸盐的情况下,hTP 催化 dT 的缓慢水解去嘧啶,生成胸腺嘧啶和 2-脱氧核糖 (dRib)。使用多种动力学同位素效应 (KIE) 测量来表征其过渡态。通过从葡萄糖或 (脱氧) 核糖酶促合成同位素富集的胸苷,并使用固有 KIE 来解释过渡态结构。来自 [1'-(14)C]-, [1-(15)N]-, [1'-(3)H]-, [2'R-(3)H]-, [2'S-(3)H]-, [4'-(3)H]-, 和 [5'-(3)H]dTs 的 KIE 值分别为 1.033 ± 0.002、1.004 ± 0.002、1.325 ± 0.003、1.101 ± 0.004、1.087 ± 0.005、1.040 ± 0.003 和 1.033 ± 0.003。过渡态分析表明存在逐步机制,在高能中间体上水分子的亲核攻击之前形成 2-脱氧核糖正离子,并且存在更高的能量障碍。在不可逆的水分子亲核攻击之前,脱氧核糖正离子与反应物之间存在平衡。结果表明,在不需要磷酸盐的情况下,胸腺嘧啶离去基团的活化。使用密度泛函理论找到了与固有 KIE 匹配的过渡态。推测活性位点组氨酸 (His116) 是在限速过渡态下激活亲核水分子的催化碱。在过渡态下,亲核水分子与端基碳原子 (r(C-O)) 之间的距离预计为 2.3 Å。过渡态模型预测在亲核捕获过程中脱氧核糖采用温和的 3'-内消旋构象。这些结果与报道的砷化反应的协同双分子机制 (Birck, M. R.; Schramm, V. L. J. Am. Chem. Soc. 2004, 126, 2447-2453) 不同。