Suppr超能文献

DNA中N-糖苷键的酶促裂解机制。

Mechanisms for enzymatic cleavage of the N-glycosidic bond in DNA.

作者信息

Drohat Alexander C, Maiti Atanu

机构信息

Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.

出版信息

Org Biomol Chem. 2014 Nov 14;12(42):8367-78. doi: 10.1039/c4ob01063a.

Abstract

DNA glycosylases remove damaged or enzymatically modified nucleobases from DNA, thereby initiating the base excision repair (BER) pathway, which is found in all forms of life. These ubiquitous enzymes promote genomic integrity by initiating repair of mutagenic and/or cytotoxic lesions that arise continuously due to alkylation, deamination, or oxidation of the normal bases in DNA. Glycosylases also perform essential roles in epigenetic regulation of gene expression, by targeting enzymatically-modified forms of the canonical DNA bases. Monofunctional DNA glycosylases hydrolyze the N-glycosidic bond to liberate the target base, while bifunctional glycosylases mediate glycosyl transfer using an amine group of the enzyme, generating a Schiff base intermediate that facilitates their second activity, cleavage of the DNA backbone. Here we review recent advances in understanding the chemical mechanism of monofunctional DNA glycosylases, with an emphasis on how the reactions are influenced by the properties of the nucleobase leaving-group, the moiety that varies across the vast range of substrates targeted by these enzymes.

摘要

DNA糖基化酶从DNA中去除受损的或经酶修饰的核碱基,从而启动碱基切除修复(BER)途径,该途径存在于所有生命形式中。这些普遍存在的酶通过启动对因DNA中正常碱基的烷基化、脱氨或氧化而不断产生的诱变和/或细胞毒性损伤的修复来促进基因组完整性。糖基化酶还通过靶向经典DNA碱基的酶修饰形式在基因表达的表观遗传调控中发挥重要作用。单功能DNA糖基化酶水解N-糖苷键以释放目标碱基,而双功能糖基化酶利用酶的胺基团介导糖基转移,生成席夫碱中间体,促进其第二种活性,即DNA主链的切割。在这里,我们综述了在理解单功能DNA糖基化酶化学机制方面的最新进展,重点是这些反应如何受到核碱基离去基团性质的影响,离去基团是这些酶所靶向的广泛底物中变化的部分。

相似文献

1
Mechanisms for enzymatic cleavage of the N-glycosidic bond in DNA.
Org Biomol Chem. 2014 Nov 14;12(42):8367-78. doi: 10.1039/c4ob01063a.
2
DNA glycosylases in the base excision repair of DNA.
Biochem J. 1997 Jul 1;325 ( Pt 1)(Pt 1):1-16. doi: 10.1042/bj3250001.
3
Reactivity of damaged pyrimidines: formation of a Schiff base intermediate at the glycosidic bond of saturated dihydrouridine.
J Am Chem Soc. 2015 Mar 11;137(9):3318-29. doi: 10.1021/ja512435j. Epub 2015 Feb 24.
4
[Base excision repair].
Postepy Biochem. 2005;51(2):120-9.
5
Glycosidic Bond Cleavage in DNA Nucleosides: Effect of Nucleobase Damage and Activation on the Mechanism and Barrier.
J Phys Chem B. 2015 Dec 24;119(51):15601-12. doi: 10.1021/acs.jpcb.5b10337. Epub 2015 Dec 15.
6
Hydrolysis of the damaged deoxythymidine glycol nucleoside and comparison to canonical DNA.
Phys Chem Chem Phys. 2013 Nov 28;15(44):19343-52. doi: 10.1039/c3cp53217h.
7
Human DNA glycosylases involved in the repair of oxidatively damaged DNA.
Biol Pharm Bull. 2004 Apr;27(4):480-5. doi: 10.1248/bpb.27.480.
8
A chemical and kinetic perspective on base excision repair of DNA.
Acc Chem Res. 2014 Apr 15;47(4):1238-46. doi: 10.1021/ar400275a. Epub 2014 Mar 19.
9
Base-excision repair of oxidative DNA damage by DNA glycosylases.
Mutat Res. 2005 Dec 11;591(1-2):45-59. doi: 10.1016/j.mrfmmm.2005.01.033. Epub 2005 Jul 27.
10
Emerging Roles of DNA Glycosylases and the Base Excision Repair Pathway.
Trends Biochem Sci. 2019 Sep;44(9):765-781. doi: 10.1016/j.tibs.2019.04.006. Epub 2019 May 9.

引用本文的文献

1
Characterizing the excision of 7,8-dihydro-8-oxoadenine by thymine DNA glycosylase.
J Biol Chem. 2025 Jun 16;301(7):110363. doi: 10.1016/j.jbc.2025.110363.
2
A Method for Constructing Nucleosome Arrays with Spatially Defined Histone PTMs and DNA Damage.
Angew Chem Int Ed Engl. 2025 Jun 10;64(24):e202500162. doi: 10.1002/anie.202500162. Epub 2025 Apr 14.
3
Structural and functional coupling in cross-linking uracil-DNA glycosylase UDGX.
Biosci Rep. 2024 Jan 31;44(1). doi: 10.1042/BSR20231551.
4
Mechanism of substrate hydrolysis by the human nucleotide pool sanitiser DNPH1.
Nat Commun. 2023 Oct 26;14(1):6809. doi: 10.1038/s41467-023-42544-4.
6
Experimental and computational snapshots of C-C bond formation in a C-nucleoside synthase.
Open Biol. 2023 Jan;13(1):220287. doi: 10.1098/rsob.220287. Epub 2023 Jan 11.
7
Computational investigations on target-site searching and recognition mechanisms by thymine DNA glycosylase during DNA repair process.
Acta Biochim Biophys Sin (Shanghai). 2022 May 25;54(6):796-806. doi: 10.3724/abbs.2022050.
8
Kinetic Analysis of the Effect of -Terminal Acetylation on Thymine DNA Glycosylase.
Biochemistry. 2022 May 17;61(10):895-908. doi: 10.1021/acs.biochem.1c00823. Epub 2022 Apr 18.
9
Base excision repair system targeting DNA adducts of trioxacarcin/LL-D49194 antibiotics for self-resistance.
Nucleic Acids Res. 2022 Mar 21;50(5):2417-2430. doi: 10.1093/nar/gkac085.
10
dCas9 binding inhibits the initiation of base excision repair in vitro.
DNA Repair (Amst). 2022 Jan;109:103257. doi: 10.1016/j.dnarep.2021.103257. Epub 2021 Nov 20.

本文引用的文献

1
5-methylcytosine recognition by Arabidopsis thaliana DNA glycosylases DEMETER and DML3.
Biochemistry. 2014 Apr 22;53(15):2525-32. doi: 10.1021/bi5002294. Epub 2014 Apr 9.
2
TET enzymes, TDG and the dynamics of DNA demethylation.
Nature. 2013 Oct 24;502(7472):472-9. doi: 10.1038/nature12750.
3
Divergent mechanisms for enzymatic excision of 5-formylcytosine and 5-carboxylcytosine from DNA.
J Am Chem Soc. 2013 Oct 23;135(42):15813-22. doi: 10.1021/ja406444x. Epub 2013 Oct 7.
4
TETonic shift: biological roles of TET proteins in DNA demethylation and transcription.
Nat Rev Mol Cell Biol. 2013 Jun;14(6):341-56. doi: 10.1038/nrm3589.
5
Gas-phase studies of substrates for the DNA mismatch repair enzyme MutY.
J Am Chem Soc. 2012 Dec 5;134(48):19839-50. doi: 10.1021/ja309082k. Epub 2012 Nov 26.
6
Recent advances in the structural mechanisms of DNA glycosylases.
Biochim Biophys Acta. 2013 Jan;1834(1):247-71. doi: 10.1016/j.bbapap.2012.10.005. Epub 2012 Oct 14.
8
The Fpg/Nei family of DNA glycosylases: substrates, structures, and search for damage.
Prog Mol Biol Transl Sci. 2012;110:71-91. doi: 10.1016/B978-0-12-387665-2.00004-3.
9
Gas-phase studies of purine 3-methyladenine DNA glycosylase II (AlkA) substrates.
J Am Chem Soc. 2012 Jun 13;134(23):9622-33. doi: 10.1021/ja211960r. Epub 2012 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验