Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA.
Langmuir. 2010 Oct 5;26(19):15614-24. doi: 10.1021/la102509a.
A route toward mechanically robust, rapidly actuating, and biologically functionalized polymeric actuators using macroporous soft materials is described. The materials were prepared by combining silk protein and a synthetic polymer (poly(N-isopropylacrylamide) (PNIAPPm)) to form interpenetrating network materials and macroporous structures by freeze-drying, with hundreds of micrometer diameter pores and exploiting the features of both polymers related to dynamic materials and structures. The chemically cross-linked PNIPAAm networks provided stimuli-responsive features, while the silk interpenetrating network formed by inducing protein β-sheet crystallinity in situ for physical cross-links provided material robustness, improved expansion force, and enzymatic degradability. The macroporous hybrid hydrogels showed enhanced thermal-responsive properties in comparison to pure PNIPAAm hydrogels, nonporous silk/PNIPAAm hybrid hydrogels, and previously reported macroporous PNIPAAm hydrogels. These new systems reach near equilibrium sizes in shrunken/swollen states in less than 1 min, with the structural features providing improved actuation rates and stable oscillatory properties due to the macroporous transport and the mechanically robust silk network. Confocal images of the hydrated hydrogels around the lower critical solution temperature (LCST) revealed macropores that could be used to track changes in the real time morphology upon thermal stimulus. The material system transformed from a macroporous to a nonporous structure upon enzymatic degradation. To extend the utility of the system, an affinity platform for a switchable or tunable system was developed by immobilizing biotin and avidin on the macropore surfaces.
本文描述了一种使用大孔软材料制备机械坚固、快速响应和功能化的聚合物驱动器的方法。该材料是通过将丝蛋白和合成聚合物(聚(N-异丙基丙烯酰胺)(PNIAPPm))结合,通过冷冻干燥形成互穿网络材料和大孔结构来制备的,具有数百微米直径的孔,并利用与动态材料和结构相关的两种聚合物的特性。化学交联的 PNIPAAm 网络提供了刺激响应特性,而丝蛋白互穿网络通过原位诱导蛋白质 β-折叠结晶形成物理交联提供了材料坚固性、提高了膨胀力和酶降解性。与纯 PNIPAAm 水凝胶、无孔丝/PNIPAAm 杂化水凝胶和以前报道的大孔 PNIPAAm 水凝胶相比,大孔杂化水凝胶显示出增强的热响应特性。这些新系统在不到 1 分钟的时间内达到收缩/膨胀状态的近平衡尺寸,其结构特征由于大孔传输和机械坚固的丝网络提供了更高的致动速率和稳定的振荡特性。在低临界溶液温度(LCST)周围水合水凝胶的共焦图像显示出大孔,可用于实时跟踪热刺激下的形态变化。该材料系统在酶降解时从大孔结构转变为无孔结构。为了扩展系统的用途,通过将生物素和亲和素固定在大孔表面上,开发了用于可切换或可调系统的亲和平台。