Suppr超能文献

Rademacher 混沌复杂度在核问题学习中的应用。

Rademacher chaos complexities for learning the kernel problem.

机构信息

College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, U.K.

出版信息

Neural Comput. 2010 Nov;22(11):2858-86. doi: 10.1162/NECO_a_00028.

Abstract

We develop a novel generalization bound for learning the kernel problem. First, we show that the generalization analysis of the kernel learning problem reduces to investigation of the suprema of the Rademacher chaos process of order 2 over candidate kernels, which we refer to as Rademacher chaos complexity. Next, we show how to estimate the empirical Rademacher chaos complexity by well-established metric entropy integrals and pseudo-dimension of the set of candidate kernels. Our new methodology mainly depends on the principal theory of U-processes and entropy integrals. Finally, we establish satisfactory excess generalization bounds and misclassification error rates for learning gaussian kernels and general radial basis kernels.

摘要

我们提出了一种新的核学习问题的泛化界。首先,我们证明核学习问题的泛化分析可以归结为对候选核的 2 阶 Rademacher 混沌过程上的上确界的研究,我们称之为 Rademacher 混沌复杂度。接下来,我们展示了如何通过成熟的度量熵积分和候选核集的伪维数来估计经验 Rademacher 混沌复杂度。我们的新方法主要依赖于 U 过程和熵积分的基本理论。最后,我们建立了学习高斯核和广义径向基核的满意的过拟合泛化界和错误分类率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验