Department of Pathology and Cell Biology, Neurology, and Neuroscience, Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA.
Cell Stem Cell. 2010 Sep 3;7(3):355-66. doi: 10.1016/j.stem.2010.07.013.
Cultured ESCs can form different classes of neurons, but whether these neurons can acquire specialized subtype features typical of neurons in vivo remains unclear. We show here that mouse ESCs can be directed to form highly specific motor neuron subtypes in the absence of added factors, through a differentiation program that relies on endogenous Wnts, FGFs, and Hh-mimicking the normal program of motor neuron subtype differentiation. Molecular markers that characterize motor neuron subtypes anticipate the functional properties of these neurons in vivo: ESC-derived motor neurons grafted isochronically into chick spinal cord settle in appropriate columnar domains and select axonal trajectories with a fidelity that matches that of their in vivo generated counterparts. ESC-derived motor neurons can therefore be programmed in a predictive manner to acquire molecular and functional properties that characterize one of the many dozens of specialized motor neuron subtypes that exist in vivo.
体外培养的胚胎干细胞可以分化为不同类型的神经元,但这些神经元是否能获得体内神经元特有的特定亚型特征尚不清楚。我们在此表明,通过一种依赖内源性 Wnt、FGF 和 Hh 的分化程序,在没有添加因子的情况下,可将小鼠胚胎干细胞定向分化为高度特化的运动神经元亚型,该程序模拟了运动神经元亚型分化的正常程序。可用于表征运动神经元亚型的分子标记物预示了这些神经元在体内的功能特性:胚胎干细胞衍生的运动神经元被同期移植到鸡的脊髓中,会定位于适当的柱状区域,并以与其体内生成的对应物相匹配的准确性选择轴突轨迹。因此,胚胎干细胞衍生的运动神经元可以被以可预测的方式编程,以获得体内存在的数十种特化运动神经元亚型之一的特征性分子和功能特性。