Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America.
PLoS One. 2010 Aug 18;5(8):e12260. doi: 10.1371/journal.pone.0012260.
Despite considerable effort, the genetic factors responsible for >90% of the antibody deficiency syndromes IgAD and CVID remain elusive. To produce a functionally diverse antibody repertoire B lymphocytes undergo class switch recombination. This process is initiated by AID-catalyzed deamination of cytidine to uridine in switch region DNA. Subsequently, these residues are recognized by the uracil excision enzyme UNG2 or the mismatch repair proteins MutSalpha (MSH2/MSH6) and MutLalpha (PMS2/MLH1). Further processing by ubiquitous DNA repair factors is thought to introduce DNA breaks, ultimately leading to class switch recombination and expression of a different antibody isotype.
METHODOLOGY/PRINCIPAL FINDINGS: Defects in AID and UNG2 have been shown to result in the primary immunodeficiency hyper-IgM syndrome, leading us to hypothesize that additional, potentially more subtle, DNA repair gene variations may underlie the clinically related antibody deficiencies syndromes IgAD and CVID. In a survey of twenty-seven candidate DNA metabolism genes, markers in MSH2, RAD50, and RAD52 were associated with IgAD/CVID, prompting further investigation into these pathways. Resequencing identified four rare, non-synonymous alleles associated with IgAD/CVID, two in MLH1, one in RAD50, and one in NBS1. One IgAD patient carried heterozygous non-synonymous mutations in MLH1, MSH2, and NBS1. Functional studies revealed that one of the identified mutations, a premature RAD50 stop codon (Q372X), confers increased sensitivity to ionizing radiation.
Our results are consistent with a class switch recombination model in which AID-catalyzed uridines are processed by multiple DNA repair pathways. Genetic defects in these DNA repair pathways may contribute to IgAD and CVID.
尽管付出了相当大的努力,但负责 >90% 的抗体缺陷综合征 IgAD 和 CVID 的遗传因素仍然难以捉摸。为了产生功能多样化的抗体库,B 淋巴细胞经历类别转换重组。这个过程是由 AID 催化的胞嘧啶脱氨作用在开关区 DNA 中产生尿嘧啶启动的。随后,这些残基被尿嘧啶切除酶 UNG2 或错配修复蛋白 MutSα(MSH2/MSH6)和 MutLα(PMS2/MLH1)识别。进一步的处理由普遍存在的 DNA 修复因子完成,据认为会引入 DNA 断裂,最终导致类别转换重组和不同抗体同种型的表达。
方法/主要发现:已经证明 AID 和 UNG2 的缺陷会导致原发性免疫缺陷高 IgM 综合征,这使我们假设,其他潜在更微妙的 DNA 修复基因变异可能是临床相关的抗体缺陷综合征 IgAD 和 CVID 的基础。在对二十七个候选 DNA 代谢基因进行调查后,MSH2、RAD50 和 RAD52 中的标记与 IgAD/CVID 相关,促使进一步研究这些途径。重测序确定了四个与 IgAD/CVID 相关的罕见非同义等位基因,两个在 MLH1 中,一个在 RAD50 中,一个在 NBS1 中。一名 IgAD 患者携带 MLH1、MSH2 和 NBS1 的杂合性非同义突变。功能研究表明,鉴定出的突变之一,即过早的 RAD50 终止密码子(Q372X),赋予对电离辐射的敏感性增加。
我们的结果与 AID 催化的尿嘧啶通过多种 DNA 修复途径进行处理的类别转换重组模型一致。这些 DNA 修复途径的遗传缺陷可能导致 IgAD 和 CVID。