Suppr超能文献

GDF11 在爪蟾胚胎尾芽形成过程中对 Smad2 激活的作用和调控。

The role and regulation of GDF11 in Smad2 activation during tailbud formation in the Xenopus embryo.

机构信息

Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA.

出版信息

Mech Dev. 2010 Sep-Dec;127(9-12):485-95. doi: 10.1016/j.mod.2010.08.004. Epub 2010 Aug 31.

Abstract

A key role for phosphorylation of Smad2 by TGFβ superfamily ligands in the axial patterning of early embryos is well established. The regulation and role of Smad2 signaling in post-neurula embryonic patterning, however, is less well understood. While a variety of TGFβ superfamily ligands are implicated in various stages of anterior-posterior patterning, the ligand GDF11 has been shown to have a particular role in post-gastrula patterning in the mouse. Mouse GDF11 is specifically localized to the developing tail and is essential for normal posterior axial patterning. Mature GDF11 ligand is inhibited by its own prodomain, and extracellular proteolysis of this prodomain is thought to be necessary for GDF11 activity. The contribution of this proteolytic regulatory mechanism to Smad activation during embryogenesis in vivo, and to the development of posterior pattern, has not been characterized. We investigate here the role of Xenopus GDF11 in the activation of Smad2 during the development of tailbud-stage embryos, and the role of this activation in larval development. We also demonstrate that the activity of BMP-1/Tolloid-like proteases is necessary for the normal GDF11-dependent activation of Smad2 phosphorylation during post-gastrula development. These data demonstrate that GDF11 has a central role in the activation of Smad2 phosphorylation in tailbud stage Xenopus embryos, and provide the first evidence that BMP-1/Tolloid-mediated prodomain cleavage is important for activation of GDF11 in vivo.

摘要

TGFβ 超家族配体对 Smad2 的磷酸化在早期胚胎的轴向模式形成中起着关键作用,这一点已得到充分证实。然而,Smad2 信号在神经胚后胚胎模式形成中的调控和作用还不太清楚。虽然各种 TGFβ 超家族配体都与前-后模式形成的各个阶段有关,但 GDF11 配体已被证明在小鼠的原肠胚后模式形成中具有特殊作用。小鼠 GDF11 特异性定位于发育中的尾巴,对于正常的后轴模式形成是必不可少的。成熟的 GDF11 配体被其自身的前导肽抑制,并且认为该前导肽的细胞外蛋白水解对于 GDF11 活性是必需的。这种蛋白水解调节机制对体内胚胎发生过程中 Smad 激活以及后模式发育的贡献尚未得到描述。我们在这里研究 Xenopus GDF11 在尾芽期胚胎发育过程中对 Smad2 激活的作用,以及这种激活在幼虫发育中的作用。我们还证明 BMP-1/Tolloid 样蛋白酶的活性对于正常的 GDF11 依赖性 Smad2 磷酸化激活是必需的。这些数据表明,GDF11 在尾芽期 Xenopus 胚胎中 Smad2 磷酸化的激活中起着核心作用,并提供了第一个证据,即 BMP-1/Tolloid 介导的前导肽切割对于体内 GDF11 的激活是重要的。

相似文献

1
The role and regulation of GDF11 in Smad2 activation during tailbud formation in the Xenopus embryo.
Mech Dev. 2010 Sep-Dec;127(9-12):485-95. doi: 10.1016/j.mod.2010.08.004. Epub 2010 Aug 31.
2
Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development.
Development. 2000 Jul;127(13):2917-31. doi: 10.1242/dev.127.13.2917.
3
Coordination of BMP-3b and cerberus is required for head formation of Xenopus embryos.
Dev Biol. 2003 Aug 1;260(1):138-57. doi: 10.1016/s0012-1606(03)00223-9.
5
Jiraiya attenuates BMP signaling by interfering with type II BMP receptors in neuroectodermal patterning.
Dev Cell. 2010 Oct 19;19(4):547-61. doi: 10.1016/j.devcel.2010.09.001.
9
A novel Cripto-related protein reveals an essential role for EGF-CFCs in Nodal signalling in Xenopus embryos.
Dev Biol. 2006 Apr 15;292(2):303-16. doi: 10.1016/j.ydbio.2006.01.006. Epub 2006 Feb 21.

引用本文的文献

1
Gdf11 regulates left-right asymmetry development through TGF-β signal.
Cell Prolif. 2025 Mar;58(3):e13765. doi: 10.1111/cpr.13765. Epub 2024 Oct 15.
2
Constructing the pharyngula: Connecting the primary axial tissues of the head with the posterior axial tissues of the tail.
Cells Dev. 2023 Dec;176:203866. doi: 10.1016/j.cdev.2023.203866. Epub 2023 Jun 30.
4
Growth differentiation factor 11: a "rejuvenation factor" involved in regulation of age-related diseases?
Aging (Albany NY). 2021 Apr 22;13(8):12258-12272. doi: 10.18632/aging.202881.
5
Mediates Posterior Development by Regulating Cell Death during Embryogenesis.
Antioxidants (Basel). 2020 Dec 12;9(12):1265. doi: 10.3390/antiox9121265.
6
The vertebrate tail: a gene playground for evolution.
Cell Mol Life Sci. 2020 Mar;77(6):1021-1030. doi: 10.1007/s00018-019-03311-1. Epub 2019 Sep 26.
7
Growth differentiation factor 11 locally controls anterior-posterior patterning of the axial skeleton.
J Cell Physiol. 2019 Dec;234(12):23360-23368. doi: 10.1002/jcp.28904. Epub 2019 Jun 10.
10
Different requirements for proteolytic processing of bone morphogenetic protein 5/6/7/8 ligands in Drosophila melanogaster.
J Biol Chem. 2012 Feb 17;287(8):5942-53. doi: 10.1074/jbc.M111.316745. Epub 2011 Dec 23.

本文引用的文献

1
TGF-beta signaling is required for multiple processes during Xenopus tail regeneration.
Dev Biol. 2008 Mar 1;315(1):203-16. doi: 10.1016/j.ydbio.2007.12.031. Epub 2008 Jan 3.
2
Identification of a novel pool of extracellular pro-myostatin in skeletal muscle.
J Biol Chem. 2008 Mar 14;283(11):7027-35. doi: 10.1074/jbc.M706678200. Epub 2008 Jan 6.
3
4
The function of growth/differentiation factor 11 (Gdf11) in rostrocaudal patterning of the developing spinal cord.
Development. 2006 Aug;133(15):2865-74. doi: 10.1242/dev.02478. Epub 2006 Jun 21.
5
Vg 1 is an essential signaling molecule in Xenopus development.
Development. 2006 Jan;133(1):15-20. doi: 10.1242/dev.02144. Epub 2005 Nov 24.
7
GDF11 controls the timing of progenitor cell competence in developing retina.
Science. 2005 Jun 24;308(5730):1927-30. doi: 10.1126/science.1110175.
8
Latent transforming growth factor-beta (TGF-beta) binding proteins: orchestrators of TGF-beta availability.
J Biol Chem. 2005 Mar 4;280(9):7409-12. doi: 10.1074/jbc.R400029200. Epub 2004 Dec 16.
9
Combinatorial activities of Smad2 and Smad3 regulate mesoderm formation and patterning in the mouse embryo.
Development. 2004 Apr;131(8):1717-28. doi: 10.1242/dev.01072. Epub 2004 Mar 17.
10
Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15842-6. doi: 10.1073/pnas.2534946100. Epub 2003 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验