University of Florida, Gainesville, 32611-6131, USA.
Acta Biomater. 2011 Jan;7(1):180-92. doi: 10.1016/j.actbio.2010.08.026. Epub 2010 Aug 31.
It is known that adsorbed adhesive proteins on implanted biomaterials modulate inflammatory responses; however, modulation of dendritic cell (DC) responses upon interaction with adhesive proteins has only begun to be characterized. DCs are specialized antigen-presenting cells that modulate both innate and adaptive immune responses. Previously we have shown that the activation and stimulatory capacity of DCs derived from C57BL6/j mice is differentially modulated by adhesive substrates. Here we extend our investigation of adhesive substrate modulation of DC responses to consider the case where the DCs had maturational defects associated with diabetes. Understanding the adhesive responses of DCs in diabetics is potentially important for immunotherapy and tissue engineering applications. In this work we use the non-obese diabetic (NOD) mouse, an established animal model for type 1 diabetes, to generate DCs (NOD-DCs). We demonstrate that NOD-DCs cultured on different adhesive substrates (collagen, fibrinogen, fibronectin, laminin, vitronectin, albumin and serum) respond with substrate-dependent modulation of the surface expression of the stimulatory molecule MHC-II and the co-stimulatory molecules CD80 and CD86 and production of the cytokines IL-12p40 and IL-10. Furthermore, the capacity of NOD-DCs to stimulate CD4(+) T-cell proliferation and cytokine production (IL-4 and IFN-γ) showed substrate-dependent modulation. Specifically, NOD-DCs cultured on vitronectin induced the highest IL-12p40 production, whereas collagen induced the highest IL-10 production. Dendritic cells cultured on collagen, fibrinogen and serum-coated substrates stimulated the highest CD4(+) T-cell proliferation. It was further determined that DCs cultured on vitronectin induced the highest percent population of IL-4-producing T-cells and DCs cultured on a fibronectin-coated substrate induced the highest expression of IFN-γ in T-cells. Pearson's correlation analysis revealed high correlations between T-cell proliferation and DC expression level of CD80 and T-cell production of IL-4 and DC production of IL-10. This demonstration of substrate-based control of NOD-DC activatory and stimulatory capacity, distinct from non-diabetic B6-DC responses, establishes the field of adhesive modulation of immune cell responses and informs the rational design of biomaterials for patients with type 1 diabetes.
已知植入生物材料上吸附的黏附蛋白可调节炎症反应;然而,黏附蛋白与树突状细胞(DC)相互作用时对 DC 反应的调节才刚刚开始被研究。DC 是一种专门的抗原呈递细胞,可调节固有免疫和适应性免疫反应。先前我们已经表明,C57BL6/j 小鼠来源的 DC 的激活和刺激能力受到黏附底物的差异调节。在这里,我们将研究黏附底物对 DC 反应的调节扩展到考虑与糖尿病相关的 DC 成熟缺陷的情况。了解糖尿病患者 DC 的黏附反应对于免疫治疗和组织工程应用可能很重要。在这项工作中,我们使用非肥胖型糖尿病(NOD)小鼠,即 1 型糖尿病的成熟动物模型,生成 DC(NOD-DC)。我们证明,在不同黏附底物(胶原、纤维蛋白原、纤维连接蛋白、层粘连蛋白、玻连蛋白、白蛋白和血清)上培养的 NOD-DC 会做出底物依赖性的反应,从而调节刺激分子 MHC-II 和共刺激分子 CD80 和 CD86 的表面表达以及细胞因子 IL-12p40 和 IL-10 的产生。此外,NOD-DC 刺激 CD4(+)T 细胞增殖和细胞因子产生(IL-4 和 IFN-γ)的能力显示出底物依赖性的调节。具体而言,在玻连蛋白上培养的 NOD-DC 诱导产生最高的 IL-12p40,而在胶原上培养的则诱导产生最高的 IL-10。在胶原、纤维蛋白原和血清包被的基质上培养的树突状细胞刺激 CD4(+)T 细胞增殖的能力最高。进一步确定,在玻连蛋白上培养的 DC 诱导产生最高比例的产生 IL-4 的 T 细胞,而在纤维连接蛋白包被的基质上培养的 DC 诱导 T 细胞中 IFN-γ的表达最高。Pearson 相关性分析显示,T 细胞增殖与 DC 表达 CD80 的水平以及 T 细胞产生 IL-4 和 DC 产生 IL-10 之间具有高度相关性。该研究表明,基于底物的 NOD-DC 激活和刺激能力的控制与非糖尿病 B6-DC 反应不同,为免疫细胞反应的黏附调节领域奠定了基础,并为 1 型糖尿病患者的生物材料的合理设计提供了信息。