Suppr超能文献

MR 分子成像技术在肿瘤血管和血管靶点中的应用。

MR molecular imaging of tumor vasculature and vascular targets.

机构信息

JHU ICMIC Program, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Adv Genet. 2010;69:1-30. doi: 10.1016/S0065-2660(10)69010-4.

Abstract

Tumor angiogenesis and the ability of cancer cells to induce neovasculature continue to be a fascinating area of research. As the delivery network that provides substrates and nutrients, as well as chemotherapeutic agents to cancer cells, but allows cancer cells to disseminate, the tumor vasculature is richly primed with targets and mechanisms that can be exploited for cancer cure or control. The spatial and temporal heterogeneity of tumor vasculature, and the heterogeneity of response to targeting, make noninvasive imaging essential for understanding the mechanisms of tumor angiogenesis, tracking vascular targeting, and detecting the efficacy of antiangiogenic therapies. With its noninvasive characteristics, exquisite spatial resolution and range of applications, magnetic resonance imaging (MRI) techniques have provided a wealth of functional and molecular information on tumor vasculature in applications spanning from "bench to bedside". The integration of molecular biology and chemistry to design novel imaging probes ensures the continued evolution of the molecular capabilities of MRI. In this review, we have focused on developments in the characterization of tumor vasculature with functional and molecular MRI.

摘要

肿瘤血管生成和癌细胞诱导新血管生成的能力仍然是一个引人入胜的研究领域。作为提供基质和营养物质以及化疗药物的输送网络,同时允许癌细胞扩散,肿瘤血管系统富含可以被利用来治疗或控制癌症的靶点和机制。肿瘤血管的空间和时间异质性,以及对靶向治疗的反应异质性,使得无创成像对于理解肿瘤血管生成的机制、跟踪血管靶向和检测抗血管生成治疗的效果至关重要。磁共振成像(MRI)技术具有非侵入性、出色的空间分辨率和广泛的应用范围,为从“基础到临床”的应用中提供了大量关于肿瘤血管的功能和分子信息。将分子生物学和化学相结合来设计新型成像探针,确保了 MRI 的分子功能不断发展。在这篇综述中,我们重点介绍了功能和分子 MRI 对肿瘤血管的特征描述的进展。

相似文献

1
MR molecular imaging of tumor vasculature and vascular targets.
Adv Genet. 2010;69:1-30. doi: 10.1016/S0065-2660(10)69010-4.
2
Preclinical MRI experience in imaging angiogenesis.
Cancer Metastasis Rev. 2000;19(1-2):39-43. doi: 10.1023/a:1026583911941.
4
Structural, functional, and molecular MR imaging of the microvasculature.
Annu Rev Biomed Eng. 2003;5:29-56. doi: 10.1146/annurev.bioeng.5.040202.121606.
5
Magnetic resonance imaging of breast cancer angiogenesis: a review.
J Exp Clin Cancer Res. 2002 Sep;21(3 Suppl):47-54.
6
Non-invasive magnetic resonance imaging of blood vessel growth in tumors using nanosized contrast agents.
Exp Biol Med (Maywood). 2010 Aug;235(8):viii. doi: 10.1258/ebm.2010.010f07.
7
Magnetic resonance imaging of tumor physiology.
Methods Mol Med. 2006;124:279-97. doi: 10.1385/1-59745-010-3:279.
8
An introduction to functional and molecular imaging with MRI.
Clin Radiol. 2010 Jul;65(7):557-66. doi: 10.1016/j.crad.2010.04.006.
9
Molecular imaging in cardiovascular diseases.
Rofo. 2015 Feb;187(2):92-101. doi: 10.1055/s-0034-1385451. Epub 2015 Jan 13.
10
Magnetic resonance imaging of tumor vasculature.
Thromb Haemost. 2003 Jan;89(1):25-33.

引用本文的文献

3
Vascular phenotyping of the invasive front in breast cancer using a 3D angiogenesis atlas.
Microvasc Res. 2023 Sep;149:104555. doi: 10.1016/j.mvr.2023.104555. Epub 2023 May 29.
4
Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response.
Cancer Drug Resist. 2021;4(2):382-413. doi: 10.20517/cdr.2020.94. Epub 2021 Jun 19.
5
Exoscope-based videocapillaroscopy system for skin microcirculation imaging of various body areas.
Biomed Opt Express. 2021 Jul 6;12(8):4627-4636. doi: 10.1364/BOE.420786. eCollection 2021 Aug 1.
6
HemoSYS: A Toolkit for Image-based Systems Biology of Tumor Hemodynamics.
Sci Rep. 2020 Feb 11;10(1):2372. doi: 10.1038/s41598-020-58918-3.
8
A biomimetic collagen derived peptide exhibits anti-angiogenic activity in triple negative breast cancer.
PLoS One. 2014 Nov 10;9(11):e111901. doi: 10.1371/journal.pone.0111901. eCollection 2014.
10
Molecular imaging of the tumor microenvironment for precision medicine and theranostics.
Adv Cancer Res. 2014;124:235-56. doi: 10.1016/B978-0-12-411638-2.00007-0.

本文引用的文献

2
Magnetic resonance susceptibility based perfusion imaging of tumors using iron oxide nanoparticles.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009 Jan-Feb;1(1):84-97. doi: 10.1002/wnan.17.
4
Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics.
Oncogene. 2010 Feb 4;29(5):625-34. doi: 10.1038/onc.2009.441. Epub 2009 Nov 30.
5
Ligand-directed cancer gene therapy to angiogenic vasculature.
Adv Genet. 2009;67:103-121. doi: 10.1016/S0065-2660(09)67004-8.
6
Conquering the dark side: colloidal iron oxide nanoparticles.
ACS Nano. 2009 Dec 22;3(12):3917-26. doi: 10.1021/nn900819y.
7
Increase in tumour permeability following TGF-beta type I receptor-inhibitor treatment observed by dynamic contrast-enhanced MRI.
Br J Cancer. 2009 Dec 1;101(11):1884-90. doi: 10.1038/sj.bjc.6605367. Epub 2009 Nov 3.
8
Noninvasive multiparametric imaging of metastasis-permissive microenvironments in a human prostate cancer xenograft.
Cancer Res. 2009 Nov 15;69(22):8822-9. doi: 10.1158/0008-5472.CAN-09-1782. Epub 2009 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验