Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16420-7. doi: 10.1073/pnas.1010732107. Epub 2010 Aug 31.
Marine dissolved organic matter (DOM) contains as much carbon as the Earth's atmosphere, and represents a critical component of the global carbon cycle. To better define microbial processes and activities associated with marine DOM cycling, we analyzed genomic and transcriptional responses of microbial communities to high-molecular-weight DOM (HMWDOM) addition. The cell density in the unamended control remained constant, with very few transcript categories exhibiting significant differences over time. In contrast, the DOM-amended microcosm doubled in cell numbers over 27 h, and a variety of HMWDOM-stimulated transcripts from different taxa were observed at all time points measured relative to the control. Transcripts significantly enriched in the HMWDOM treatment included those associated with two-component sensor systems, phosphate and nitrogen assimilation, chemotaxis, and motility. Transcripts from Idiomarina and Alteromonas spp., the most highly represented taxa at the early time points, included those encoding TonB-associated transporters, nitrogen assimilation genes, fatty acid catabolism genes, and TCA cycle enzymes. At the final time point, Methylophaga rRNA and non-rRNA transcripts dominated the HMWDOM-amended microcosm, and included gene transcripts associated with both assimilatory and dissimilatory single-carbon compound utilization. The data indicated specific resource partitioning of DOM by different bacterial species, which results in a temporal succession of taxa, metabolic pathways, and chemical transformations associated with HMWDOM turnover. These findings suggest that coordinated, cooperative activities of a variety of bacterial "specialists" may be critical in the cycling of marine DOM, emphasizing the importance of microbial community dynamics in the global carbon cycle.
海洋溶解有机物 (DOM) 所含的碳与地球大气相当,是全球碳循环的关键组成部分。为了更好地定义与海洋 DOM 循环相关的微生物过程和活动,我们分析了微生物群落对高分子 DOM(HMWDOM)添加的基因组和转录组响应。未添加 DOM 的对照培养物中的细胞密度保持不变,随着时间的推移,只有很少的转录类别表现出显著差异。相比之下,添加 DOM 的微宇宙在 27 小时内细胞数量增加了一倍,并且在所有测量的时间点都观察到了来自不同分类群的各种 HMWDOM 刺激转录本,与对照相比。在 HMWDOM 处理中显著富集的转录本包括与双组分传感器系统、磷酸盐和氮同化、趋化性和运动性相关的转录本。在早期时间点高度代表的 Idiomarina 和 Alteromonas 属的转录本包括编码 TonB 相关转运蛋白、氮同化基因、脂肪酸分解代谢基因和 TCA 循环酶的基因。在最后一个时间点,Methylophaga rRNA 和非 rRNA 转录本主导了添加 HMWDOM 的微宇宙,并且包括与同化和异化单碳化合物利用相关的基因转录本。这些数据表明不同细菌物种对 DOM 进行了特定的资源划分,这导致了与 HMWDOM 周转相关的分类群、代谢途径和化学转化的时间顺序。这些发现表明,各种细菌“专家”的协调、合作活动可能在海洋 DOM 的循环中至关重要,强调了微生物群落动态在全球碳循环中的重要性。