Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
PLoS Comput Biol. 2010 Aug 19;6(8):e1000899. doi: 10.1371/journal.pcbi.1000899.
The On-Off direction-selective ganglion cell (DSGC) in mammalian retinas responds most strongly to a stimulus moving in a specific direction. The DSGC initiates spikes in its dendritic tree, which are thought to propagate to the soma with high probability. Both dendritic and somatic spikes in the DSGC display strong directional tuning, whereas somatic PSPs (postsynaptic potentials) are only weakly directional, indicating that spike generation includes marked enhancement of the directional signal. We used a realistic computational model based on anatomical and physiological measurements to determine the source of the enhancement. Our results indicate that the DSGC dendritic tree is partitioned into separate electrotonic regions, each summing its local excitatory and inhibitory synaptic inputs to initiate spikes. Within each local region the local spike threshold nonlinearly amplifies the preferred response over the null response on the basis of PSP amplitude. Using inhibitory conductances previously measured in DSGCs, the simulation results showed that inhibition is only sufficient to prevent spike initiation and cannot affect spike propagation. Therefore, inhibition will only act locally within the dendritic arbor. We identified the role of three mechanisms that generate directional selectivity (DS) in the local dendritic regions. First, a mechanism for DS intrinsic to the dendritic structure of the DSGC enhances DS on the null side of the cell's dendritic tree and weakens it on the preferred side. Second, spatially offset postsynaptic inhibition generates robust DS in the isolated dendritic tips but weak DS near the soma. Third, presynaptic DS is apparently necessary because it is more robust across the dendritic tree. The pre- and postsynaptic mechanisms together can overcome the local intrinsic DS. These local dendritic mechanisms can perform independent nonlinear computations to make a decision, and there could be analogous mechanisms within cortical circuitry.
哺乳动物视网膜中的开-关方向选择性神经节细胞 (DSGC) 对特定方向移动的刺激反应最强烈。DSGC 在其树突中引发尖峰,这些尖峰被认为以高概率传播到体部。DSGC 的树突和体部尖峰都表现出强烈的方向调谐,而体部 PSP(突触后电位)仅表现出微弱的方向调谐,这表明尖峰产生包括对方向信号的显著增强。我们使用基于解剖学和生理学测量的现实计算模型来确定增强的来源。我们的结果表明,DSGC 树突被分为单独的电紧张区域,每个区域都对其局部兴奋性和抑制性突触输入进行求和以引发尖峰。在每个局部区域内,局部尖峰阈值基于 PSP 幅度非线性地放大首选响应相对于零响应。使用先前在 DSGC 中测量的抑制性电导,模拟结果表明抑制仅足以防止尖峰起始,而不能影响尖峰传播。因此,抑制将仅在树突树内的局部区域起作用。我们确定了在局部树突区域中产生方向选择性 (DS) 的三种机制的作用。首先,DSGC 树突结构内在的机制增强了细胞树突的零侧的 DS,并削弱了其首选侧的 DS。其次,空间偏移的突触后抑制在孤立的树突尖端产生强大的 DS,但在体部附近产生弱 DS。第三,显然需要突触前 DS,因为它在树突中更稳健。突触前和突触后机制一起可以克服局部内在的 DS。这些局部树突机制可以进行独立的非线性计算来做出决策,并且在皮质电路中可能存在类似的机制。