Suppr超能文献

LQTS 基因 LOVD 数据库。

LQTS gene LOVD database.

机构信息

James D. Watson Institute of Genome Sciences, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.

出版信息

Hum Mutat. 2010 Nov;31(11):E1801-10. doi: 10.1002/humu.21341.

Abstract

The Long QT Syndrome (LQTS) is a group of genetically heterogeneous disorders that predisposes young individuals to ventricular arrhythmias and sudden death. LQTS is mainly caused by mutations in genes encoding subunits of cardiac ion channels (KCNQ1, KCNH2,SCN5A, KCNE1, and KCNE2). Many other genes involved in LQTS have been described recently(KCNJ2, AKAP9, ANK2, CACNA1C, SCNA4B, SNTA1, and CAV3). We created an online database(http://www.genomed.org/LOVD/introduction.html) that provides information on variants in LQTS-associated genes. As of February 2010, the database contains 1738 unique variants in 12 genes. A total of 950 variants are considered pathogenic, 265 are possible pathogenic, 131 are unknown/unclassified, and 292 have no known pathogenicity. In addition to these mutations collected from published literature, we also submitted information on gene variants, including one possible novel pathogenic mutation in the KCNH2 splice site found in ten Chinese families with documented arrhythmias. The remote user is able to search the data and is encouraged to submit new mutations into the database. The LQTS database will become a powerful tool for both researchers and clinicians.

摘要

长 QT 综合征(LQTS)是一组遗传异质性疾病,使年轻人易患室性心律失常和猝死。LQTS 主要由编码心脏离子通道亚基的基因突变引起(KCNQ1、KCNH2、SCN5A、KCNE1 和 KCNE2)。最近还描述了许多其他与 LQTS 相关的基因(KCNJ2、AKAP9、ANK2、CACNA1C、SCNA4B、SNTA1 和 CAV3)。我们创建了一个在线数据库(http://www.genomed.org/LOVD/introduction.html),提供与 LQTS 相关基因变异的信息。截至 2010 年 2 月,该数据库包含 12 个基因中的 1738 个独特变异。总共 950 个变异被认为是致病性的,265 个可能是致病性的,131 个是未知/未分类的,292 个没有已知的致病性。除了从已发表的文献中收集到的这些突变外,我们还提交了有关基因变异的信息,包括在十个有记录心律失常的中国家庭中发现的 KCNH2 剪接位点的一个可能的新致病性突变。远程用户可以搜索该数据库,并被鼓励将新的突变提交到数据库中。LQTS 数据库将成为研究人员和临床医生的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8e2/3037562/68f15b586a9a/humu0031-E1801-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验