Suppr超能文献

从成年突变型超氧化物歧化酶1(SOD1(G93A))转基因肌萎缩侧索硬化症(ALS)小鼠的大脑中分离功能性神经干细胞。

Functional neural stem cell isolation from brains of adult mutant SOD1 (SOD1(G93A)) transgenic amyotrophic lateral sclerosis (ALS) mice.

作者信息

Lee Jae Chul, Jin Younggeon, Jin Juyoun, Kang Bong Gu, Nam Do-Hyun, Joo Kyeung Min, Cha Choong Ik

机构信息

Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea.

出版信息

Neurol Res. 2011 Jan;33(1):33-7. doi: 10.1179/016164110X12807570509899. Epub 2010 Aug 31.

Abstract

OBJECTIVES

The aim of present study is to investigate more functional neural stem cells (NSCs) could be isolated from brains with amyotrophic lateral sclerosis (ALS) and expanded in vitro, based on previous reports demonstrating de novo neurogenesis is enhanced to replace degenerating neural tissue.

METHODS

Thirteen- or eighteen-week-old mutant human Cu/Zn superoxide dismutase (SOD1(G93A)) transgenic ALS and wild-type SOD1 transgenic control mice were utilized. Changes in numbers of NSCs in the dentate gyrus were analyzed by immunohistochemistry against nestin and CD133. NSCs were primarily cultured from hippocampus of ALS or control mice. Expression of NSC markers, in vitro expansion capacity, and differentiating potential were compared.

RESULTS

Hippocampus of 13-week-old pre-symptomatic ALS mice harbor more cells that can be propagated for more than 12 passages in vitro, compared with same age control mice. Primarily-cultured cells formed neurospheres in the NSC culture medium, expressed NSC markers, and differentiated into cells with differentiated neural cell characteristics in the differentiation condition confirming that they are NSCs. In contrast, long-term expansible NSCs could not be derived from brains of 18-week-old symptomatic ALS mice with the same experimental techniques, although they had comparable nestin-immunoreactive cells in the dentate gyrus.

DISCUSSION

These results would suggest that increased neuroregeneration in early phase of ALS could be translated to regenerative approaches; however, long-term exposure to ALS microenvironments could abolish functional capacities of NSCs.

摘要

目的

基于先前报道显示新生神经发生增强以替代退化神经组织,本研究旨在探究能否从肌萎缩侧索硬化症(ALS)小鼠大脑中分离出更多功能性神经干细胞(NSCs)并在体外进行扩增。

方法

使用13周龄或18周龄的突变型人类铜/锌超氧化物歧化酶(SOD1(G93A))转基因ALS小鼠和野生型SOD1转基因对照小鼠。通过针对巢蛋白和CD133的免疫组织化学分析齿状回中NSCs数量的变化。从ALS或对照小鼠的海马中进行NSCs的原代培养。比较NSC标志物的表达、体外扩增能力和分化潜能。

结果

与同年龄对照小鼠相比,13周龄症状前ALS小鼠的海马中含有更多可在体外传代超过12次的细胞。原代培养的细胞在NSC培养基中形成神经球,表达NSC标志物,并在分化条件下分化为具有分化神经细胞特征的细胞,证实它们是NSCs。相比之下,尽管18周龄症状性ALS小鼠的齿状回中有相当数量的巢蛋白免疫反应性细胞,但采用相同实验技术却无法从其大脑中获得长期可扩增的NSCs。

讨论

这些结果表明,ALS早期神经再生的增加可转化为再生方法;然而,长期暴露于ALS微环境可能会消除NSCs的功能能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验