Li Hong, Deng Hongwen
College of Environmental and Biological Engineering, Chongqing Technology and Business University, 400067 Chongqing, China.
Genetica. 2010 Oct;138(9-10):915-24. doi: 10.1007/s10709-010-9480-x. Epub 2010 Sep 3.
Jansen and Nap (Trends Genet 17(7):388-391, 2001) and Jansen (Nat Rev Genet 4:145-151, 2003) first proposed the concept of genetical genomics, or genome-wide genetic analysis of gene expression data, which is also called transcriptome mapping. In this approach, microarrays are used for measuring gene expression levels across genetic mapping populations. These gene expression patterns have been used for genome-wide association analysis, an analysis referred to as expression QTL (eQTL) mapping. Recent progress in genomics and experimental biology has brought exponential growth of the biological information available for computational analysis in public genomics databases. Bioinformatics is essential to genome-wide analysis of gene expression data and used as an effective tool for eQTL mapping. The use of Plabsoft database, EcoTILLING, GNARE and FastMap allowed for dramatic reduction of time in genome analysis. Some web-based tools (e.g., Lirnet, eQTL Viewer) provide efficient and intuitive ways for biologists to explore transcriptional regulation patterns, and to generate hypotheses on the genetic basis of transcriptional regulations. Expression quantitative trait loci (eQTL) mapping concerns finding genomic variation to elucidate variation of expression traits. This problem poses significant challenges due to high dimensionality of both the gene expression and the genomic marker data. The core challenges in understanding and explaining eQTL associations are the fine mapping and the lack of mechanistic explanation. But with the development of genetical genomics and computer technology, many new approaches for eQTL mapping will emerge. The statistical methods used for the analysis of expression QTL will become mature in the future.
扬森和纳普(《遗传学趋势》,2001年第17卷第7期,第388 - 391页)以及扬森(《自然综述:遗传学》,2003年第4卷,第145 - 151页)首次提出了遗传基因组学的概念,即对基因表达数据进行全基因组遗传分析,这也被称为转录组图谱绘制。在这种方法中,微阵列被用于测量遗传作图群体中的基因表达水平。这些基因表达模式已被用于全基因组关联分析,这种分析被称为表达数量性状位点(eQTL)图谱绘制。基因组学和实验生物学的最新进展使得公共基因组学数据库中可供计算分析的生物信息呈指数级增长。生物信息学对于基因表达数据的全基因组分析至关重要,并被用作eQTL图谱绘制的有效工具。使用Plabsoft数据库、EcoTILLING、GNARE和FastMap能够大幅减少基因组分析的时间。一些基于网络的工具(例如Lirnet、eQTL Viewer)为生物学家探索转录调控模式以及生成关于转录调控遗传基础的假设提供了高效且直观的方式。表达数量性状位点(eQTL)图谱绘制涉及寻找基因组变异以阐明表达性状的变异。由于基因表达和基因组标记数据的高维度性,这个问题带来了重大挑战。理解和解释eQTL关联的核心挑战在于精细定位以及缺乏机理解释。但随着遗传基因组学和计算机技术的发展,将会出现许多新的eQTL图谱绘制方法。用于分析表达数量性状位点的统计方法在未来将会成熟。