Suppr超能文献

人类细胞周期基因表达谱的格兰杰因果关系分析。

Granger causality analysis of human cell-cycle gene expression profiles.

作者信息

Nagarajan Radhakrishnan, Upreti Meenakshi

机构信息

University of Arkansas for Medical Sciences, USA.

出版信息

Stat Appl Genet Mol Biol. 2010;9:Article31. doi: 10.2202/1544-6115.1555. Epub 2010 Aug 13.

Abstract

Granger causality (GC) tests are ideally suited to investigate time series data generated by bivariate vector autoregressive (VAR) processes. Recent studies have applied GC analysis and its extensions for modeling functional relationships and network structure from temporal gene expression profiles. The present study investigates GC analysis of human cell-cycle gene expression profiles that can be modeled as a first-order bivariate VAR. Analytical results presented establish the contribution of the VAR process parameters, including auto-regulatory feedback and noise variance to the mean-squared forecast error, as a critical component in identifying statistically significant GC relationships. These results in turn discourage blind inference of functional relationship between a given pair of genes solely based on the result of the statistical tests for GC. The presence of significant auto-regulatory feedback and discrepancy in noise variance is demonstrated across the cell-cycle gene expression profiles by VAR parameter estimation. It is emphasized that discrepancies in noise variance can be due to artifacts and can lead to spurious existence of functional relationship between a given pair of genes. VAR parameter estimation is encouraged for better of GC interpretation of the results. Published case studies on GC analysis of the same publicly available cell-cycle gene expression data are reinvestigated for transparency.

摘要

格兰杰因果关系(GC)检验非常适合用于研究由二元向量自回归(VAR)过程生成的时间序列数据。最近的研究已将GC分析及其扩展应用于从时间基因表达谱中对功能关系和网络结构进行建模。本研究调查了人类细胞周期基因表达谱的GC分析,该表达谱可建模为一阶二元VAR。所呈现的分析结果确定了VAR过程参数的贡献,包括自调节反馈和噪声方差对均方预测误差的影响,这是识别具有统计学意义的GC关系的关键组成部分。这些结果反过来不鼓励仅基于GC统计检验结果盲目推断给定基因对之间的功能关系。通过VAR参数估计在整个细胞周期基因表达谱中证明了显著的自调节反馈和噪声方差差异的存在。需要强调的是,噪声方差的差异可能是由于伪影导致的,并且可能导致给定基因对之间功能关系的虚假存在。鼓励进行VAR参数估计以更好地解释GC结果。为了提高透明度,对已发表的关于相同公开可用细胞周期基因表达数据的GC分析案例研究进行了重新调查。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验