Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
Curr Osteoporos Rep. 2010 Dec;8(4):168-77. doi: 10.1007/s11914-010-0033-0.
Homeostatic bone remodeling depends on precise regulation of osteoblast-osteoclast coupling through intricate endocrine, immune, neuronal, and mechanical factors. The osteoblast-osteoclast model of bone physiology with layers of regulatory complexity can be investigated as a component of a local skeletal subsystem or as a part of a complete whole-body system. In this review, we flip the traditional investigative paradigm of scientific experimentation ("bottom-top research") to a "top-bottom" approach using systems biology. We first establish the intricacies of the two-cell model at the molecular signaling level. We then provide, on a systems level, an integrative physiologic approach involving many recognized organ-level subsystems having direct and/or indirect effects on bone remodeling. Lastly, a hypothetical model of bone remodeling based on frequency and amplitude regulatory mechanisms is presented. It is hoped that by providing a thorough model of skeletal homeostasis, future progress can be made in researching and treating skeletal morbidities.
稳态骨重塑依赖于成骨细胞-破骨细胞偶联的精确调节,这种调节通过复杂的内分泌、免疫、神经和机械因素来实现。骨生理学中的成骨细胞-破骨细胞模型具有多层次的调控复杂性,可以作为局部骨骼子系统的一个组成部分进行研究,也可以作为完整全身系统的一部分进行研究。在这篇综述中,我们颠覆了传统的科学实验研究范式(“从下到上”的研究),采用系统生物学的方法进行“从上到下”的研究。我们首先在分子信号水平上确定了两细胞模型的复杂性。然后,我们在系统水平上提供了一种综合的生理方法,其中涉及许多具有直接和/或间接影响骨重塑的公认器官水平子系统。最后,提出了一个基于频率和幅度调节机制的骨重塑假设模型。我们希望通过提供一个全面的骨骼稳态模型,能够在研究和治疗骨骼疾病方面取得进展。