Suppr超能文献

铺展和回缩与液滴尺寸的关系。

Spreading and retraction as a function of drop size.

机构信息

Johns Hopkins University, Baltimore, MD, USA.

出版信息

Adv Colloid Interface Sci. 2010 Dec 15;161(1-2):61-76. doi: 10.1016/j.cis.2010.08.003. Epub 2010 Aug 11.

Abstract

We simulate the spreading and retraction of a two-dimensional drop over a thin film in the small slope limit for drop heights ranging from a few nanometers to hundreds of nanometers. Drop motion is initiated by an impulsive change in surface wettability expressed in terms of disjoining pressure. Owing to the presence of the film, these simulations require no closure condition at the 'apparent' contact line. Rather, we study the relationships that emerge between the apparent contact line velocity and dynamic contact angles. The disjoining pressure that we study includes stabilizing van der Waals interactions and destabilizing acid-base interactions. Changes in wetting conditions that promote spreading place the thin film surrounding the drop out of equilibrium; the drop spreads as the film thickens to its new equilibrium value. Changes in wetting conditions that promote retraction can either place the thin film out of equilibrium in a stable regime, or they can place the thin film in a spinodally unstable regime. We study drop rearrangement as a function of drop scale for these three cases. Small drops, with heights on the same order as the film thickness, are strongly influenced by disjoining pressure gradients everywhere beneath them. Larger drops, with heights at least an order of magnitude greater than the film thickness, have disjoining pressure gradients isolated near the apparent contact line at all times. For these larger drops, after initial dynamics, macroscopic behavior is recovered; drops move in agreement with Tanner's law. However, dynamics associated with the thin film can play a leading role in the ensuing drop response even after Tanner's law emerges. In particular, when drops retract over spinodally unstable films, retraction occurs in three regimes. Rims form near the apparent contact line over time scales comparable to the time scale for the instability. The rim geometry can be characterized in terms of spinodal film thicknesses. The rims then propagate toward the bulk drop. Finally, the rim disappears and the drop assumes a cap-like shape. Tanner's law is obeyed during the latter two regimes. Attempts to simulate drop rearrangements disregarding the thin film dynamics before Tanner's law manifests can lead to erroneous outcomes, as shown in simulations of drop retraction on a solid surface with an imposed Navier slip length.

摘要

我们模拟了二维液滴在薄液膜上的扩展和收缩过程,研究范围涵盖了从几纳米到数百纳米的液滴高度。通过表面润湿性的突跃变化(以毛细压力的形式表示)来启动液滴的运动。由于存在薄液膜,这些模拟不需要在“明显”接触线处施加封闭条件。相反,我们研究了明显接触线速度和动态接触角之间的关系。我们研究的毛细压力包括稳定的范德华相互作用和不稳定的酸碱相互作用。促进扩展的润湿条件变化会使液滴周围的薄液膜失去平衡;随着薄液膜厚度的增加,液滴扩展到新的平衡值。促进收缩的润湿条件变化既可以使薄液膜处于稳定状态下的失稳状态,也可以使薄液膜处于旋节不稳定状态。我们研究了这三种情况下液滴重新排列与液滴尺度的关系。小液滴的高度与液膜厚度相同量级,它们受到来自下方各处毛细压力梯度的强烈影响。高度至少比液膜厚度大一个数量级的大液滴,在任何时刻都有毛细压力梯度隔离在明显接触线附近。对于这些大液滴,在初始动力学之后,恢复了宏观行为;液滴按照 Tanner 定律运动。然而,即使在 Tanner 定律出现之后,与薄液膜相关的动力学仍可能在随后的液滴响应中起主导作用。特别是,当液滴在旋节不稳定的薄液膜上收缩时,收缩会经历三个阶段。随着时间的推移,在明显接触线附近形成边缘,其时间尺度与不稳定性的时间尺度相当。边缘的几何形状可以用旋节膜厚来描述。然后边缘向大块液滴传播。最后,边缘消失,液滴呈现帽状形状。在后两个阶段,Tanner 定律成立。在 Tanner 定律出现之前,忽略薄液膜动力学来模拟液滴重排可能会导致错误的结果,如图所示,在具有施加的 Navier 滑移长度的固体表面上液滴回缩的模拟。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验