Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal.
Appl Environ Microbiol. 2010 Nov;76(21):7048-60. doi: 10.1128/AEM.01195-10. Epub 2010 Sep 3.
Accumulation of galactose in dairy products due to partial lactose fermentation by lactic acid bacteria yields poor-quality products and precludes their consumption by individuals suffering from galactosemia. This study aimed at extending our knowledge of galactose metabolism in Lactococcus lactis, with the final goal of tailoring strains for enhanced galactose consumption. We used directed genetically engineered strains to examine galactose utilization in strain NZ9000 via the chromosomal Leloir pathway (gal genes) or the plasmid-encoded tagatose 6-phosphate (Tag6P) pathway (lac genes). Galactokinase (GalK), but not galactose permease (GalP), is essential for growth on galactose. This finding led to the discovery of an alternative route, comprising a galactose phosphotransferase system (PTS) and a phosphatase, for galactose dissimilation in NZ9000. Introduction of the Tag6P pathway in a galPMK mutant restored the ability to metabolize galactose but did not sustain growth on this sugar. The latter strain was used to prove that lacFE, encoding the lactose PTS, is necessary for galactose metabolism, thus implicating this transporter in galactose uptake. Both PTS transporters have a low affinity for galactose, while GalP displays a high affinity for the sugar. Furthermore, the GalP/Leloir route supported the highest galactose consumption rate. To further increase this rate, we overexpressed galPMKT, but this led to a substantial accumulation of α-galactose 1-phosphate and α-glucose 1-phosphate, pointing to a bottleneck at the level of α-phosphoglucomutase. Overexpression of a gene encoding α-phosphoglucomutase alone or in combination with gal genes yielded strains with galactose consumption rates enhanced up to 50% relative to that of NZ9000. Approaches to further improve galactose metabolism are discussed.
由于乳酸菌部分发酵乳糖,导致乳制品中积累半乳糖,从而产生低质量的产品,并使半乳糖血症患者无法食用。本研究旨在扩展我们对乳球菌乳糖代谢的知识,最终目标是定制能够增强半乳糖消耗的菌株。我们使用定向遗传工程菌株,通过染色体 Leloir 途径(gal 基因)或质粒编码的标签 6-磷酸(Tag6P)途径(lac 基因)检查 NZ9000 中的半乳糖利用。半乳糖激酶(GalK),而不是半乳糖渗透酶(GalP),对半乳糖生长是必需的。这一发现导致了一种替代途径的发现,该途径包含半乳糖磷酸转移酶系统(PTS)和磷酸酶,用于 NZ9000 中的半乳糖异化作用。在 galPMK 突变体中引入 Tag6P 途径恢复了代谢半乳糖的能力,但不能在该糖上维持生长。后一种菌株用于证明编码乳糖 PTS 的 lacFE 对半乳糖代谢是必要的,从而暗示该转运体参与半乳糖摄取。两种 PTS 转运体对半乳糖的亲和力都较低,而 GalP 对半乳糖的亲和力较高。此外,GalP/Leloir 途径支持最高的半乳糖消耗率。为了进一步提高这个速率,我们过表达了 galPMKT,但这导致α-半乳糖 1-磷酸和α-葡萄糖 1-磷酸的大量积累,表明在α-磷酸葡萄糖变位酶水平上存在瓶颈。单独过表达编码α-磷酸葡萄糖变位酶的基因或与 gal 基因一起过表达,可使半乳糖消耗率相对于 NZ9000 提高高达 50%。讨论了进一步改善半乳糖代谢的方法。