Suppr超能文献

促进乳球菌利用半乳糖。

Towards enhanced galactose utilization by Lactococcus lactis.

机构信息

Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal.

出版信息

Appl Environ Microbiol. 2010 Nov;76(21):7048-60. doi: 10.1128/AEM.01195-10. Epub 2010 Sep 3.

Abstract

Accumulation of galactose in dairy products due to partial lactose fermentation by lactic acid bacteria yields poor-quality products and precludes their consumption by individuals suffering from galactosemia. This study aimed at extending our knowledge of galactose metabolism in Lactococcus lactis, with the final goal of tailoring strains for enhanced galactose consumption. We used directed genetically engineered strains to examine galactose utilization in strain NZ9000 via the chromosomal Leloir pathway (gal genes) or the plasmid-encoded tagatose 6-phosphate (Tag6P) pathway (lac genes). Galactokinase (GalK), but not galactose permease (GalP), is essential for growth on galactose. This finding led to the discovery of an alternative route, comprising a galactose phosphotransferase system (PTS) and a phosphatase, for galactose dissimilation in NZ9000. Introduction of the Tag6P pathway in a galPMK mutant restored the ability to metabolize galactose but did not sustain growth on this sugar. The latter strain was used to prove that lacFE, encoding the lactose PTS, is necessary for galactose metabolism, thus implicating this transporter in galactose uptake. Both PTS transporters have a low affinity for galactose, while GalP displays a high affinity for the sugar. Furthermore, the GalP/Leloir route supported the highest galactose consumption rate. To further increase this rate, we overexpressed galPMKT, but this led to a substantial accumulation of α-galactose 1-phosphate and α-glucose 1-phosphate, pointing to a bottleneck at the level of α-phosphoglucomutase. Overexpression of a gene encoding α-phosphoglucomutase alone or in combination with gal genes yielded strains with galactose consumption rates enhanced up to 50% relative to that of NZ9000. Approaches to further improve galactose metabolism are discussed.

摘要

由于乳酸菌部分发酵乳糖,导致乳制品中积累半乳糖,从而产生低质量的产品,并使半乳糖血症患者无法食用。本研究旨在扩展我们对乳球菌乳糖代谢的知识,最终目标是定制能够增强半乳糖消耗的菌株。我们使用定向遗传工程菌株,通过染色体 Leloir 途径(gal 基因)或质粒编码的标签 6-磷酸(Tag6P)途径(lac 基因)检查 NZ9000 中的半乳糖利用。半乳糖激酶(GalK),而不是半乳糖渗透酶(GalP),对半乳糖生长是必需的。这一发现导致了一种替代途径的发现,该途径包含半乳糖磷酸转移酶系统(PTS)和磷酸酶,用于 NZ9000 中的半乳糖异化作用。在 galPMK 突变体中引入 Tag6P 途径恢复了代谢半乳糖的能力,但不能在该糖上维持生长。后一种菌株用于证明编码乳糖 PTS 的 lacFE 对半乳糖代谢是必要的,从而暗示该转运体参与半乳糖摄取。两种 PTS 转运体对半乳糖的亲和力都较低,而 GalP 对半乳糖的亲和力较高。此外,GalP/Leloir 途径支持最高的半乳糖消耗率。为了进一步提高这个速率,我们过表达了 galPMKT,但这导致α-半乳糖 1-磷酸和α-葡萄糖 1-磷酸的大量积累,表明在α-磷酸葡萄糖变位酶水平上存在瓶颈。单独过表达编码α-磷酸葡萄糖变位酶的基因或与 gal 基因一起过表达,可使半乳糖消耗率相对于 NZ9000 提高高达 50%。讨论了进一步改善半乳糖代谢的方法。

相似文献

1
Towards enhanced galactose utilization by Lactococcus lactis.
Appl Environ Microbiol. 2010 Nov;76(21):7048-60. doi: 10.1128/AEM.01195-10. Epub 2010 Sep 3.
3
Influence of the lactose plasmid on the metabolism of galactose by Streptococcus lactis.
J Bacteriol. 1979 Feb;137(2):878-84. doi: 10.1128/jb.137.2.878-884.1979.
5
Co-culture of Lactobacillus delbrueckii and engineered Lactococcus lactis enhances stoichiometric yield of D-lactic acid from whey permeate.
Appl Microbiol Biotechnol. 2019 Jul;103(14):5653-5662. doi: 10.1007/s00253-019-09819-7. Epub 2019 May 21.
8
Galactose metabolism by Streptococcus mutans.
Appl Environ Microbiol. 2004 Oct;70(10):6047-52. doi: 10.1128/AEM.70.10.6047-6052.2004.
9
Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants.
J Bacteriol. 1974 Sep;119(3):830-9. doi: 10.1128/jb.119.3.830-839.1974.

引用本文的文献

1
New insights in amino sugar metabolism by the gut microbiome.
Gut Microbes. 2025 Dec;17(1):2510462. doi: 10.1080/19490976.2025.2510462. Epub 2025 May 25.
4
Development of SacB-based counterselection for efficient allelic exchange in .
Microbiol Spectr. 2025 Jan 7;13(1):e0206624. doi: 10.1128/spectrum.02066-24. Epub 2024 Nov 29.
5
Environmental and genetic regulation of Streptococcus pneumoniae galactose catabolic pathways.
Nat Commun. 2024 Jun 17;15(1):5171. doi: 10.1038/s41467-024-49619-w.
6
Effect of sugar transporter on galactose utilization in .
Front Microbiol. 2023 Nov 21;14:1267237. doi: 10.3389/fmicb.2023.1267237. eCollection 2023.
7
A New Method for Gene Deletion to Investigate Cell Wall Biogenesis in Fusobacterium nucleatum.
Methods Mol Biol. 2024;2727:69-82. doi: 10.1007/978-1-0716-3491-2_6.
8
HicA Toxin-Based Counterselection Marker for Allelic Exchange Mutations in Fusobacterium nucleatum.
Appl Environ Microbiol. 2023 Apr 26;89(4):e0009123. doi: 10.1128/aem.00091-23. Epub 2023 Apr 11.

本文引用的文献

1
Characterization of the individual glucose uptake systems of Lactococcus lactis: mannose-PTS, cellobiose-PTS and the novel GlcU permease.
Mol Microbiol. 2009 Feb;71(3):795-806. doi: 10.1111/j.1365-2958.2008.06564.x. Epub 2008 Dec 1.
2
Identification and functional characterisation of cellobiose and lactose transport systems in Lactococcus lactis IL1403.
Arch Microbiol. 2008 Mar;189(3):187-96. doi: 10.1007/s00203-007-0308-8. Epub 2007 Oct 2.
3
The las enzymes control pyruvate metabolism in Lactococcus lactis during growth on maltose.
J Bacteriol. 2007 Sep;189(18):6727-30. doi: 10.1128/JB.00902-07. Epub 2007 Jul 6.
4
Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363.
J Bacteriol. 2007 Apr;189(8):3256-70. doi: 10.1128/JB.01768-06. Epub 2007 Feb 16.
5
Therapeutic drug delivery by genetically modified Lactococcus lactis.
Ann N Y Acad Sci. 2006 Aug;1072:176-86. doi: 10.1196/annals.1326.031.
6
Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp. cremoris MG1363.
J Bacteriol. 2007 Feb;189(4):1366-81. doi: 10.1128/JB.01013-06. Epub 2006 Oct 6.
8
Natural sweetening of food products by engineering Lactococcus lactis for glucose production.
Metab Eng. 2006 Sep;8(5):456-64. doi: 10.1016/j.ymben.2006.05.003. Epub 2006 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验