Du A J, Smith Sean C
Centre for Computational Molecular Science, Chemistry Building 68, The University of Queensland, Qld 4072, Brisbane, Australia.
Nanotechnology. 2005 Oct;16(10):2118-23. doi: 10.1088/0957-4484/16/10/024. Epub 2005 Aug 9.
Density functional theory (DFT) is a powerful approach to electronic structure calculations in extended systems, but suffers currently from inadequate incorporation of long-range dispersion, or Van der Waals (VdW) interactions. VdW-corrected DFT is tested for interactions involving molecular hydrogen, graphite, single-walled carbon nanotubes (SWCNTs), and SWCNT bundles. The energy correction, based on an empirical London dispersion term with a damping function at short range, allows a reasonable physisorption energy and equilibrium distance to be obtained for H(2) on a model graphite surface. The VdW-corrected DFT calculation for an (8, 8) nanotube bundle reproduces accurately the experimental lattice constant. For H(2) inside or outside an (8, 8) SWCNT, we find the binding energies are respectively higher and lower than that on a graphite surface, correctly predicting the well known curvature effect. We conclude that the VdW correction is a very effective method for implementing DFT calculations, allowing a reliable description of both short-range chemical bonding and long-range dispersive interactions. The method will find powerful applications in areas of SWCNT research where empirical potential functions either have not been developed, or do not capture the necessary range of both dispersion and bonding interactions.
密度泛函理论(DFT)是扩展系统中电子结构计算的一种强大方法,但目前在长程色散或范德华(VdW)相互作用的纳入方面存在不足。对涉及分子氢、石墨、单壁碳纳米管(SWCNT)和SWCNT束的相互作用进行了VdW校正的DFT测试。基于具有短程阻尼函数的经验伦敦色散项的能量校正,使得在模型石墨表面上能够获得合理的物理吸附能量和平衡距离。对(8,8)纳米管束进行的VdW校正DFT计算准确地再现了实验晶格常数。对于(8,8)SWCNT内部或外部的H(2),我们发现结合能分别高于和低于石墨表面上的结合能,正确地预测了众所周知的曲率效应。我们得出结论,VdW校正是实施DFT计算的一种非常有效的方法,能够可靠地描述短程化学键合和长程色散相互作用。该方法将在SWCNT研究领域中找到强大的应用,在这些领域中,经验势函数要么尚未开发出来,要么无法涵盖色散和键合相互作用的必要范围。