Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China.
BMC Evol Biol. 2010 Sep 6;10:272. doi: 10.1186/1471-2148-10-272.
tRNase Z is the endonuclease that is responsible for the 3'-end processing of tRNA precursors, a process essential for tRNA 3'-CCA addition and subsequent tRNA aminoacylation. Based on their sizes, tRNase Zs can be divided into the long (tRNase ZL) and short (tRNase ZS) forms. tRNase ZL is thought to have arisen from a tandem gene duplication of tRNase ZS with further sequence divergence. The species distribution of tRNase Z is complex. Fungi represent an evolutionarily diverse group of eukaryotes. The recent proliferation of fungal genome sequences provides an opportunity to explore the structural and functional diversity of eukaryotic tRNase Zs.
We report a survey and analysis of candidate tRNase Zs in 84 completed fungal genomes, spanning a broad diversity of fungi. We find that tRNase ZL is present in all fungi we have examined, whereas tRNase ZS exists only in the fungal phyla Basidiomycota, Chytridiomycota and Zygomycota. Furthermore, we find that unlike the Pezizomycotina and Saccharomycotina, which contain a single tRNase ZL, Schizosaccharomyces fission yeasts (Taphrinomycotina) contain two tRNase ZLs encoded by two different tRNase ZL genes. These two tRNase ZLs are most likely localized to the nucleus and mitochondria, respectively, suggesting partitioning of tRNase Z function between two different tRNase ZLs in fission yeasts. The fungal tRNase Z phylogeny suggests that tRNase ZSs are ancestral to tRNase ZLs. Additionally, the evolutionary relationship of fungal tRNase ZLs is generally consistent with known phylogenetic relationships among the fungal species and supports tRNase ZL gene duplication in certain fungal taxa, including Schizosaccharomyces fission yeasts. Analysis of tRNase Z protein sequences reveals putative atypical substrate binding domains in most fungal tRNase ZSs and in a subset of fungal tRNase ZLs. Finally, we demonstrate the presence of pseudo-substrate recognition and catalytic motifs at the N-terminal halves of tRNase ZLs.
This study describes the first comprehensive identification and sequence analysis of candidate fungal tRNase Zs. Our results support the proposal that tRNase ZL has evolved as a result of duplication and diversification of the tRNase ZS gene.
tRNase Z 是负责 tRNA 前体 3'-端加工的内切核酸酶,该过程对于 tRNA 3'-CCA 的添加和随后的 tRNA 氨酰化至关重要。根据它们的大小,tRNase Z 可分为长(tRNase ZL)和短(tRNase ZS)形式。tRNase ZL 被认为是 tRNase ZS 串联基因复制的结果,随后发生了进一步的序列分化。tRNase Z 的物种分布较为复杂。真菌是真核生物中一个具有丰富多样性的进化群体。最近真菌基因组序列的大量增加为探索真核 tRNase Z 的结构和功能多样性提供了机会。
我们报告了对 84 个已完成真菌基因组中候选 tRNase Z 的调查和分析,这些真菌涵盖了广泛的真菌多样性。我们发现,所有我们研究过的真菌都存在 tRNase ZL,而 tRNase ZS 仅存在于真菌门 Basidiomycota、Chytridiomycota 和 Zygomycota 中。此外,我们发现,与 Pezizomycotina 和 Saccharomycotina 不同,它们只包含一个 tRNase ZL,裂殖酵母(Taphrinomycotina)含有两个由两个不同 tRNase ZL 基因编码的 tRNase ZL。这两个 tRNase ZLs 很可能分别定位于细胞核和线粒体,这表明裂殖酵母中 tRNase Z 功能的划分由两个不同的 tRNase ZL 完成。真菌 tRNase Z 系统发育表明 tRNase ZSs 是 tRNase ZLs 的祖先。此外,真菌 tRNase ZLs 的进化关系通常与真菌物种之间已知的系统发育关系一致,并支持某些真菌分类群中 tRNase ZL 基因的复制,包括裂殖酵母。对 tRNase Z 蛋白序列的分析揭示了大多数真菌 tRNase ZSs 和部分真菌 tRNase ZLs 中存在假定的非典型底物结合结构域。最后,我们证明了 tRNase ZL 的 N 端半段存在假底物识别和催化基序。
本研究首次全面鉴定和分析了候选真菌 tRNase Z。我们的结果支持 tRNase ZL 是由 tRNase ZS 基因的复制和多样化进化而来的观点。